
DendrETH Specification

DendrETH is a superset of ALC. Thus, we do not
define again the LCU algorithm, but merely the pro-
posed improvements. We define two data structures to
use in our protocol. First, the slashing evidence, or
evidence. Secondly, we define the slashing action
S . A slashing starts with a beacon state B [68] and a
slashing action. We represent the action of slashing a
set of validators N by S evidence,N��������! {1}
We define evidence as having several attributes:

1) BlockHeader⇤: an attested block header, which
is the contender that originates the slashing.

2) Ci+1: the next sync committee.
3) ⇡Ci+1 : the next sync committee branch is the

Merkle path that authenticates the next sync com-
mittee.

4) BlockHeader: the finalized block header.
5) ⇡BlockHeader⇤ : a Merkle branch validating the

finalized block header.
6) aggregate: the aggregated signature �N[1:512]

of the nodes participating in the sync committee,
sync committee signature and the bitmap of
the participants bmap.

7) slot: the signature slot.
8) K

N1
P

, . . . ,K
N512
P

: the sync committee public keys.
9) root: represents the root hash of a block that the

evidence claims to be finalized.
10) ⇡root: Merkle proof showing the inclusion of root

in the state tree.
It is worth noting that there are two evidences provided
in a slashing. The purpose of having two distinct shreds
of evidence is to provide proof that a particular valida-
tor (or set of validators) committed an equivocation or
another malicious act. Equivocation essentially means
producing multiple conflicting pieces of information
for the same context.
The slashing action S has:

1) N : a list of validators to be slashed.
2) evidence.
3) BlockHeader|HeaderChain|.root: the recent fi-

nalized block header root.
4) slot: recent finalized slot.

The complete slashing algorithm has two parts:
IdentifySlashing and EnforceSlashing.
The latter should only be called if the former returns 1
(otherwise, it means that the slashing evidence is not
valid).

Algorithm 2: Slashing algorithm in DendrETH -
IdenfitySlashing
Input: B,S , evidence[2]
Output: {?, 1}

1 slash  0 . slash flag
2 assert S.slot > evidence.slot
3 . asserts both evidences are sequential
4 if evidence[0].slot =

evidence[1].slot ^ evidence[0].BlockHeader⇤ =
evidence[1].BlockHeader⇤ then

5 slash  1
6 end if
7 if evidence[0].Ci+1 6= evidence[1].Ci+1 then
8 slash  1
9 end if

10 linear[0] evidence[0].root ==
evidence[0].BlockHeader.root

11 if ¬(final(evidence[0]) _ final(evidence[1])) then
12 assert BlockHeader|HeaderChain|.root = ;
13 end if
14 . Checks to prevent slashing validators

who signed an alternate history
non-maliciously

15 canonical_is_0 
evidence[0].BlockHeader.slot �
evidence[1].BlockHeader.slot ^ slot ==
evidence[0].BlockHeader.slot ^
BlockHeader|HeaderChain|.root ==
evidence[0].root ^ linear[0]

16 . Might check B and S
17 if canonical_is_0 ^ slash then
18 return 1
19 end if

Description of Algorithms 2 and 3 is in the text

Algorithm 3: Slashing algorithm in DendrETH -
EnforceSlashing
Input: B,S , evidence[2]
Output: {?, 1}

1 ToSlash ;
2 for key in S .evidence[0].KN1

P
, . . . ,K

N512
P

do
3 ToSlash =

ToSlash [ GetPublicKey(key,aggregate.bmap)

4 end for
5 for val in S.N do
6 . asserts at least one validator val to

be slashed 2 B.validators
7 end for
8 assert ValidateSlashingEvidence(evidence[0],

S.BlockHeader|HeaderChain|.root, slot,
B.GenesisRoot)

9 S evidence,N��������! {1}

Fig. 5: DendrETH specification (slashing algorithm)
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