
DendrETH Specification

DendrETH is a superset of ALC. Thus, we do not
define again the LCU algorithm, but merely the pro-
posed improvements. We define two data structures to
use in our protocol. First, the slashing evidence, or
evidence. Secondly, we define the slashing action
S . A slashing starts with a beacon state B [68] and a
slashing action. We represent the action of slashing a
set of validators N by S evidence,N��������! {1}
We define evidence as having several attributes:

1) BlockHeader⇤: an attested block header, which
is the contender that originates the slashing.

2) Ci+1: the next sync committee.
3) ⇡Ci+1 : the next sync committee branch is the

Merkle path that authenticates the next sync com-
mittee.

4) BlockHeader: the finalized block header.
5) ⇡BlockHeader⇤ : a Merkle branch validating the

finalized block header.
6) aggregate: the aggregated signature �N[1:512]

of the nodes participating in the sync committee,
sync committee signature and the bitmap of
the participants bmap.

7) slot: the signature slot.
8) K

N1
P

, . . . ,K
N512
P

: the sync committee public keys.
9) root: represents the root hash of a block that the

evidence claims to be finalized.
10) ⇡root: Merkle proof showing the inclusion of root

in the state tree.
It is worth noting that there are two evidences provided
in a slashing. The purpose of having two distinct shreds
of evidence is to provide proof that a particular valida-
tor (or set of validators) committed an equivocation or
another malicious act. Equivocation essentially means
producing multiple conflicting pieces of information
for the same context.
The slashing action S has:

1) N : a list of validators to be slashed.
2) evidence.
3) BlockHeader|HeaderChain|.root: the recent fi-

nalized block header root.
4) slot: recent finalized slot.

The complete slashing algorithm has two parts:
IdentifySlashing and EnforceSlashing.
The latter should only be called if the former returns 1
(otherwise, it means that the slashing evidence is not
valid).

Algorithm 2: Slashing algorithm in DendrETH -
IdenfitySlashing
Input: B,S , evidence[2]
Output: {?, 1}

1 slash 0 . slash flag
2 assert S.slot > evidence.slot
3 . asserts both evidences are sequential
4 if evidence[0].slot =

evidence[1].slot ^ evidence[0].BlockHeader⇤ =
evidence[1].BlockHeader⇤ then

5 slash 1
6 end if
7 if evidence[0].Ci+1 6= evidence[1].Ci+1 then
8 slash 1
9 end if

10 linear[0] evidence[0].root ==
evidence[0].BlockHeader.root

11 if ¬(final(evidence[0]) _ final(evidence[1])) then
12 assert BlockHeader|HeaderChain|.root = ;
13 end if
14 . Checks to prevent slashing validators

who signed an alternate history
non-maliciously

15 canonical_is_0
evidence[0].BlockHeader.slot �
evidence[1].BlockHeader.slot ^ slot ==
evidence[0].BlockHeader.slot ^
BlockHeader|HeaderChain|.root ==
evidence[0].root ^ linear[0]

16 . Might check B and S
17 if canonical_is_0 ^ slash then
18 return 1
19 end if

Description of Algorithms 2 and 3 is in the text

Algorithm 3: Slashing algorithm in DendrETH -
EnforceSlashing
Input: B,S , evidence[2]
Output: {?, 1}

1 ToSlash ;
2 for key in S .evidence[0].KN1

P
, . . . ,K

N512
P

do
3 ToSlash =

ToSlash [GetPublicKey(key,aggregate.bmap)

4 end for
5 for val in S.N do
6 . asserts at least one validator val to

be slashed 2 B.validators
7 end for
8 assert ValidateSlashingEvidence(evidence[0],

S.BlockHeader|HeaderChain|.root, slot,
B.GenesisRoot)

9 S evidence,N��������! {1}

Fig. 5: DendrETH specification (slashing algorithm)

13

	Introduction
	Problem and Solution Overviews
	Problem Definition
	Technical Challenges
	Contributions
	Outline

	Preliminaries
	Blockchain
	Cryptographic Building Blocks
	Cryptograpgic Keys
	Hash Functions
	Signatures
	Accumulators

	Merkle Trees and Merkle Proofs
	Light Client Protocol
	Altair Hard Fork and the Ethereum Sync Committees
	SNARKS
	Cross-chain Transactions, Cross-chain Logic, and Cross-chain State

	The Harmonia Framework
	System Model and Components
	Threat and Network Model
	System Goals
	Architecture
	Altair Light Cient 1.0
	DendrETH - strengthening the security of the ALC
	Threat Model
	Ghost Checkpoint Attestation Attack
	Sync Committee Slashing

	Building Cross-Chain Applications
	Proof of Concept: Blockchain Migration using Harmonia and DendrETH

	Implementation
	SNARK Relayer
	Cross-chain Logic
	Application Relayer
	Light Client Verifier and Application Proof Verifier Contracts
	Verifiers For EVM based chains
	Verifiers for non-EVM based chains

	Circuits
	Target Domains
	Committment

	Trusted Ceremony
	SNARK Generation

	Empirical Evaluation
	Setup
	Circuits
	Latency
	Storage
	Hardware
	Transaction Fees and Costs
	Considerations on Throughput
	Reproduceability

	Discussion and Qualitative Assessment
	Safety
	Liveness
	Accountability and Auditability
	Censorship Resistance
	Upgradeability, Flexibility and Extensability
	Security Proofs
	Trusted Ceremony and Initialization
	Post-Quantum Considerations
	Incentivization
	Extending light client security to the whole validator set of Ethereum
	Future Work

	Related Work
	Blockchain interoperability and Light Clients
	Comparison with other interoperability approaches
	SNARK-based cross-chain bridges
	Rollups

	Conclusion
	References
	Appendix A: Additional Context
	Appendix B: Merkle Proof Verification
	Appendix C: The Ethereum Blockchain
	System Actors
	State

	Consensus
	Sync Committee

	Appendix D: A Gentle Introduction To SNARKs
	Trusted Setup
	Generating SNARKS
	Verifying SNARKS
	Groth16

	Appendix E: Evaluation Plots
	Appendix F: Altair Formal Specification
	Appendix G: Circom Test Results

