IEEE TrustCom/BlockchainSys 2020, the 3rd International Workshop on Blockchain Systems and Applications.

SSIBAC: Self-Sovereign Identity Based Access Control

Rafael Belchior

Benedikt Putz, Guenther Pernul,

Miguel Correia, André Vasconcelos,

Sérgio Guerreiro

Universität Regensburg

Outline

- Introduction to SSIBAC
- Background on Access Control, DIDs and VCs, and
- SSIBAC Model
- SSIBAC + ABAC
- Use Case: Qualichain
- Evaluation
- Conclusions

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case:

Evaluation

Conclusions

Centro Hospitalar Barreiro Montijo has been fined 400,000 euros for violating the General Data Protection Regulation.

-Data breaches are usual, and its severity increasing

Introduction

-Despite regulatory efforts, such as the General Data Protection Regulation (GDPR), data breaches still occur, causing great damage

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Introduction

-A DID represents an identity and allows trustable interactions, rooted on a verifiable registry (e.g., a blockchain), and public-key cryptography.

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Introduction

-A DID represents an identity and allows trustable interactions, rooted on a verifiable registry (e.g., a blockchain), and public-key cryptography.

Background

SSIBAC Model

-A verifiable credential (VC) provides a standard way to digitally express credentials in a way that is cryptographically secure, privacy-respecting, and machine-verifiable

SSIBAC + ABAC

Use Case: Qualichair

Evaluation

Introduction

-A DID represents an identity and allows trustable interactions, rooted on a verifiable registry (e.g., a blockchain), and public-key cryptography.

Background

SSIBAC Model

-A verifiable credential (VC) provides a standard way to digitally express credentials in a way that is cryptographically secure, privacy-respecting, and machine-verifiable

SSIBAC + ABAC

-This happens via verifiable presentations (VP), which contains metadata and proofs for a subset of the contained claims. Can use Zero Knowledge Proofs.

Use Case: Qualichair

Evaluation

Introduction

-A DID represents an identity and allows trustable interactions, rooted on a verifiable registry (e.g., a blockchain), and public-key cryptography.

Background

SSIBAC Model

-A verifiable credential (VC) provides a standard way to digitally express credentials in a way that is cryptographically secure, privacy-respecting, and machine-verifiable

SSIBAC + ABAC

-This happens via verifiable presentations (VP), which contains metadata and proofs for a subset of the contained claims. Can use Zero Knowledge Proofs.

Use Case: Qualichain

-Access control models (ACM) provide selective access to a set of resources, under a specific set of conditions. Common ACMs include Attribute Based Access Control (ABAC)

Evaluation

-SSI allows services to store less data about users

Access Control

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Background

SSIBAC Model

SSIBAC + ABAC

Qualichain

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Conclusions

SSIBAC maps:

- VCs to attributes/roles/etc... on access control policies
- access control requests to verifiable presentation requests
- verifiable presentations to access control policies
- access control policies evaluated using conventional ACMs

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Fig. 1: Access control flow enforced by the SSIBAC model

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichair

Evaluation

Conclusions

SSIBAC components

- a set of users $\mathcal{U} = \{u_1, u_2, ...\}$. Each $user_i$ is identified by a DID and holds a public/private key pair (K_p^i, K_s^i) associated to that DID and a set of VCs $\mathcal{L}_i = \{l_1^i, l_2^i, ...\}$;
- a set of resources $\mathcal{R} = \{r_1, r_2, ...\};$
- a set of issuers $\mathcal{I} = \{i_1, i_2, ...\}$ that issue VCs for users;
- a set of verifiers $\mathcal{V} = \{v_1, v_2, ...\}$ who request VPs and mediate the access control flow. Typically, they are also resource providers;
- a set of permission validators $\mathcal{P} = \{p_1, p_2, ...\};$

Attribute, Role, etc

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

• a set of injective functions $\psi = \{\psi_1, \psi_2, ...\}$, such that $\psi_i : \mathcal{L}_i \to \mathcal{P}_k$, i.e., function ψ_i maps the VCs from $user_i$ to permission validator P_k ;

• an injective function $\chi: \mathcal{AC} \to \mathcal{VP}_R$, mapping access control policies to VPRs.

$$\chi$$
 ($\xi = VPR$

SSIBAC + ABAC

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Fig. 2: SSIBAC in a multi-organizational setting, in light of the XACML standard perspective

Qualichain

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

The QualiChain project aims to propose a blockchain based approach for disrupting the archiving, management, and verification of educational and employment qualifications

Qualichain

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Stakeholders:

- certification seekers, e.g., graduated students. Correspond to <u>users (or subjects)</u>
- certification providers, e.g., higher education institutes; correspond to issuers
- **certification validators**, e.g., potential employer, correspond to <u>verifiers</u>

Universities issue verifiable credentials for students for using the QualiChain platform.

It is desirable to use SSI-based access control in this scenario so that QualiChain does not need to store any personal data; authorization is conducted in a p2p way, using DIDs and VCs:

Qualichain

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Fig. 3: SSI-based ACM applied to the QualiChain scenario

Implementation

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

HYPERLEDGER

GreenLight Dev Ledger

Contributed by the Province of British Columbia - vonx.io 🗗

Evaluation

Introductior

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Fig. 4: Latency depending on the number of emitted credentials

Evaluation

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Fig. 5: Duration of the various steps in the *Connecting* and *access control* phases (startup phase omitted), with 10 issued credentials

Evaluation

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Conclusions

E2E access control request and response takes ~1s

Fig. 5: Duration of the various steps in the *Connecting* and *access control* phases (startup phase omitted), with 10 issued credentials

Introduction

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

Conclusions

 Self-Sovereign Identity Based Access Control (SSIBAC), the first approach to access control based on decentralized identity

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

- Self-Sovereign Identity Based Access Control (SSIBAC), the first approach to access control based on decentralized identity

 We explore this topic by instantiating our SSIBAC model with attribute-based access control, which is applied to a real-world case, the EU QualiChain project.

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichai:

- Self-Sovereign Identity Based Access Control (SSIBAC), the first approach to access control based on decentralized identity
- We explore this topic by instantiating our SSIBAC model with attribute-based access control, which is applied to a real-world case, the EU QualiChain project.
- Our experimental evaluation shows that each access control request can be served in around 0.9 seconds.

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichair

Evaluation

- Self-Sovereign Identity Based Access Control (SSIBAC), the first approach to access control based on decentralized identity
- We explore this topic by instantiating our SSIBAC model with attribute-based access control, which is applied to a real-world case, the EU QualiChain project.
- Our experimental evaluation shows that each access control request can be served in around 0.9 seconds.
- Although more timeconsuming than traditional centralized access control systems, access control based on self-sovereign identity can alleviate the data privacy problem

Future Work

Introduction

Background

SSIBAC Model

SSIBAC + ABAC

Use Case: Qualichain

Evaluation

 Explore cross-chain (and cross-blockchain) authorization, leveraging recent blockchain interoperability techniques.
 (see "A Survey on Blockchain Interoperability: Past, Present, and Future Trends)

Verifiers are single points of failure.
 Solution: decentralizing the access control engine e.g. using blockchain based access control
 (see Distributed Attribute-Based Access Control System Using a Permissioned Blockchain)

Thank you for your attention

SSIBAC PAPER

