
SSIBAC: Self-Sovereign Identity Based
Access Control

Rafael Belchior∗, Benedikt Putz†, Guenther Pernul†, Miguel Correia∗, André Vasconcelos∗ and Sérgio Guerreiro∗
∗INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

{rafael.belchior, miguel.p.correia, andre.vasconcelos, sergio.guerreiro}@tecnico.ulisboa.pt
†Chair of Information Systems, University of Regensburg, Germany

{benedikt.putz, guenther.pernul}@wiwi.uni-regensburg.de

Abstract—Ineffective data management practices pose serious
issues to individuals and companies, e.g., risk of identity theft
and online exposure. Self-sovereign identity (SSI) is a new
identity management approach that ensures users have full
control of their personal data. In this work, we alleviate data
breach and user privacy problems by showing how SSI can
fit within the context of established enterprise identity and
access management technologies. In light of recent endeavors, we
explore the use of decentralized identifiers, verifiable credentials,
and blockchains that support SSI. We propose Self-Sovereign
Identity Based Access Control (SSIBAC), an access control model
for cross-organization identity management. SSIBAC leverages
conventional access control models and blockchain technology
to provide decentralized authentication, followed by centralized
authorization. The access control process does not require storing
user sensitive data. A prototype was implemented and evaluated,
processing 55,000 access control requests per second with a
latency of 3 seconds.

Index Terms—self sovereign identity, decentralized identity,
authorization, attribute-based authorization, access control

I. INTRODUCTION

Centralized access control (AC) systems face several chal-
lenges and risks [1], [2]: cumbersome policy management,
lack of flexibility of setup and configuration, ineffective policy
enforcement, risk of privacy leakage, and availability (single
point of failure). These translate into issues of authentication,
authorization, and accountability (AAA). Some authors argue
that these challenges, allied to dynamic threats such as the
landscape complexity and the lack of collaborative tools,
yield conventional access control models (ACM) insufficient
to respond to today’s enterprise needs [1].

Companies collect user data to perform access control and
other processes (e.g., user profiling). Data collection exposes
users to data breaches and to abusive data analysis, both cases
of privacy violation. We can define privacy as the ability of
users to selectively disclosure their information. Data breaches
are common due to, for example, poor security practices and
ineffective personal data management processes. Examples can
be found in enterprises across all industries and have generated
great financial damage [3].

To protect individuals, several regulations have been pro-
posed, such as the General Data Protection Regulation
(GDPR) [4] and the California Consumer Privacy Act (CCPA)
[5]. These regulations protect the personal data of natural
persons and pose obligations to the entities holding their data

(controllers) and those processing it (processors). Companies
that do not respect these regulations are subject to fines, in
case there is mishandling of personal data.1 Despite regulatory
efforts, data breaches still occur.

To empower the user with control over of his data, while
proving dynamic, trustable, and decentralized ACMs, we refer
to the concept of Self-Sovereign Identity (SSI) [6]. SSI is a
good match to the blockchain promise of decentralization [7],
[8]. In SSI, the user stores identity data and decides which data
to disclose. Unlike existing schemes such as OpenID Connect
(OIDC) [9], Shibboleth [10], and Microsoft Passport [11], there
is no need to entrust an intermediary identity provider with
storing identity data [12]. SSI can alleviate the impact of data
breaches and provide the user with flexibility managing the
identity: instead of spreading data and information among dif-
ferent service providers, the user has full control of his personal
data and discloses only required information. By using zero-
knowledge proofs (ZKPs), SSI allows satisfying predicates
based on user data without revealing that data [13]. This
provides privacy for access control processes, where a user
needs to satisfy a certain predicate to access resources. SSI also
allows a single identity to be linked to sets of attributes emitted
by different organizations. Therefore, it fosters interoperability
across administrative domains and applications [14].

Blockchain is a suitable technology to support SSI, as
it is decentralized and supports peer-to-peer interaction [7].
Furthermore, it can be used to obtain a reliable infrastructure
for decentralized access control, mitigating some of its tradi-
tional problems, such as the lack of adaptability to dynamic
environments [1]. Although the use of a replicated immutable
appendable log could raise concerns regarding the GDPR, SSI
allows technical privacy protection, achieving GDPR compli-
ance [7]. In particular, SSI does not compromise GDPR’s view
on the right of users to rectify and remove data and promote
the identification and regulation of data processors. Conversely,
the application of SSI to the access control process can also
protect users’ privacy.

SSI provides a model for authentication and issuing creden-
tials. However, a structured approach to use it for authorization
and access control is still missing, arguably due to its novelty.
To fill this gap, we leverage three emerging technologies:

1https://www.enforcementtracker.com/insights

blockchain, decentralized identifiers (DIDs) [15], and verifi-
able credentials (VCs) [16]. We define a novel ACM, referred
to as Self-Sovereign Identity Based Access Control (SSIBAC),
that can be more appropriate to today’s enterprise needs in
terms of data privacy and security. We show how DIDs and
VCs can be integrated with attribute-based access control in a
federated setting, minimizing data disclosure and data redun-
dancy. For transparency and accountability regarding access
requests, VCs can be used with blockchain-based ACMs.

We go beyond existing work on attribute-based access
control by ensuring user privacy. While privacy has been a
concern for ABAC models [17], existing ABAC models still
store all identity data with a single identity provider. With
SSIBAC, selective disclosure of attributes and range proofs
for numerical values ensure that data is only disclosed on a
need-to-know basis.

In summary, the major contributions of this paper are:
• a novel SSI-based ACM called SSIBAC, with a focus on

data privacy and sovereignty;
• an implementation of SSIBAC, relying on an attribute-

based model;
• an evaluation of the implementation, providing insights

on the bottlenecks of the solution and future research
directions; the prototype processed 55,000 access control
requests per second with a latency of 3 seconds.

The paper is structured as follows. In Section II, we provide
preliminaries. We formally define the SSIBAC model in Sec-
tion III, followed by an instance of such model using ABAC in
Section IV. We report and discuss evaluation results in Section
V. Section VI highlights related work. Finally, in Section VII
we conclude the paper.

II. PRELIMINARIES

This section introduces concepts regarding self-sovereign
identity and access control.

A. Centralized and Federated Identity

Enterprise identity systems typically focus on roles or at-
tributes associated with each user, enabling the execution of
their duties. In enterprise identity and access management
(IAM) the friction caused by centralized systems is most
apparent in federation scenarios, where external users have to
be granted access to internal systems. An example is Eduroam,
a federation of educational organizations that provide internet
access to each others users [18]. Traditionally, this is achieved
by requesting data through identity federation systems [17].
However, identity federation systems are not interoperable
among different standards and bridges are required to interact
across federations [19].

B. Decentralized Identifiers

The SSI concept allows a user – individual, organization,
or “thing” (e.g., a device or a computer program representing
a process) – to present its credentials to a third party without
intermediaries. This process is enabled by DIDs, a concept
defined by the W3C [15]. A DID represents an identity and

allows trustable interactions, rooted on a verifiable registry
(e.g., a blockchain), and public-key cryptography [20]. DIDs
are controlled by DID subjects. A DID resolves to a DID
document with metadata, which also provides the means for
authenticating the DID subject. The DID subject can prove the
ownership of a DID through a private key associated with a
DID’s public key. A DID can be defined as a three-part string
representing the format did:<method>:<identifier>,
where <method> represents the DID method (the specifica-
tion for a specific type of DID) that the <identifier> uses
[15]. To facilitate the management of DIDs, one can leverage
user agents (or simply agents), i.e., software processes acting
on behalf of a DID subject [13].

C. Verifiable Credentials

A verifiable credential (VC) provides a standard way to
digitally express credentials in a way that is cryptographically
secure, privacy-respecting, and machine-verifiable [13], [16].
An entity called issuer generates and signs such credentials
with its private key: this enables a third-party to verify the
issuer of a VC (the DID of the issuer is typically associated
with the credential). A verifier can look up the public key of
a given DID, associated with a given credential on a verifiable
data registry (e.g., a public blockchain).

For example, the VON ledger2 is a Hyperledger Indy-
based blockchain storing public DID documents, credential
definitions (representing the schema of a VC, i.e., the attributes
the VC should hold) and revocation registries (repositories
containing information about revoked credentials). Credential
schemas allow a verifier to check the claims against a vocabu-
lary of admissible claims. A claim is an assertion on a subject.
For example, an issuer defines a set of possible attributes in a
schema that may later be issued in VCs associated with that
schema. A VC, therefore, consists of claims made about a
subject by an issuer. The subject and issuer are represented
by unique identifiers, which we assume to be DIDs for our
purposes. A VC is trusted as long as its issuer is trusted.

At verification time, the holder of a verifiable credential
(often the subject itself) creates a verifiable presentation (VP),
which contains metadata and proofs for a subset of the con-
tained claims. The VP creation process might be required by a
verifier, through a verifiable presentation request (VPR). The
VP is sent to a verifier, that confirms the VC held by the subject
satisfies a specific predicate. The VP can be issued using
ZKPs, “containing derived data instead of directly embedded
verifiable credentials” [16]. For simplicity, we deem that the
result of a generated VP can be true or false, if the predicate
is satisfied or not, respectively.

D. Access Control

Access control systems provide selective access to a set of
resources, under a specific set of conditions. Common ACMs
include Role-Based Access Control (RBAC) [21] and Attribute-
Based Access Control (ABAC) [22], besides many others, e.g.,

2https://vonx.io/

the classical Access Control Matrix, Access Control Lists,
Capabilities, Mandatory Access Control, and Discretionary
Access Control [23].

In ABAC, a commonly used ACM, access rights are granted
based on attributes, i.e., the attributes the subject holds and the
attributes expressing the environmental context. According to
the XACML specification [24], which is suitable to implement
an ABAC system, several components are cooperating in the
access control process. The subject (that we also call user)
is the entity that requires access to a resource. A client is
a device that requests access to a resource on behalf of a
subject. A Policy Enforcement Point (PEP) intercepts access
requests from a user, redirecting them to the Policy Decision
Point (PDP), and enforcing its AC decision. The PDP is
the component that computes the result of an access control
request (ALLOW or DENY), using an access control policy and
information stored on the Policy Information Point (PIP). The
PIP contains information about the subject’s attributes. The
Policy Retrieval Point (PRP) stores and retrieves access control
policies, which are managed by the Policy Administration Point
(PAP). Although the literature separates the attribute storage
(PIP) from the access control policy storage (PRP), we refer to
them as the same entity, for brevity. Moreover, accountability
is achieved by tracking the access control requests issued by
the subject, and the corresponding access control decision
calculated by the PDP. This process allows the system to
establish a history of access to resources.

According to Sandhu et al., an ACM should satisfy the
following principles [25]:

Principle 1. Least privilege: Only those permissions required
for the tasks performed by the user in the role are assigned to
the role.

Principle 2. Separation of duties: Invocation of mutually ex-
clusive roles can be required to complete a sensitive task, such
as requiring an accounting clerk and an account manager to
participate in issuing a check.

We define a principle related to the Principle of Least
Privilege, that aims to alleviate the impact of data breaches:

Principle 3. Context-Based Privilege: Only the strictly re-
quired information for computing an access control decision
should be stored and processed.

III. SSIBAC
This section presents the SSIBAC access control model.

The SSIBAC model is an evolution of classical ACMs that
integrates the concept of SSI and mechanisms that implement
it with blockchain. The major idea of SSIBAC is to map
VCs (encoded into VPRs, and their responses, VPs) to access
control policies, stored at the PRP, that are parsed by an
underlying ACM, in order to achieve context-based privilege,
and thus data privacy and sovereignty.

SSIBAC abstracts previous models and can be instantiated
using one of those models, e.g., RBAC or ABAC. This means
that a particular instantiation of SSIBAC reuses concepts and

mechanisms of the underlying model. SSIBAC regulates the
access of subjects to resources by evaluating access control
rules against permission validators. Permission validators al-
low mapping VPs to attributes, roles, or other abstractions
of data. For instance, if SSIBAC is instantiated with RBAC,
the permission validator is the role, whereas if SSIBAC is
instantiated with ABAC, the permission validator is the set of
subject and contextual attributes. A user is uniquely identified
by a DID (although a user can hold multiple DIDs), and has
a set of VCs, issued by issuers. An issuer is a trusted entity
that issues VCs.

A permission validator, along with an access control request,
allows the PDP to calculate an access control decision. We
consider a function ψ that maps VCs to permission validators,
depending on the input. For example, ψ(i,ATTRIBUTE) maps
all the user verifiable credentials from useri to attributes that
can be used by an ABAC system. Conversely, ψ(i,ROLE) maps
the VCs from useri to roles, which can be evaluated by an
RBAC system. In practise, the initialization of ψ depends
on the underlying access control system to be used, and
its mapping is trivial. We, therefore, establish the bridge
between DIDs, VCs, and the permission validators of ACMs,
by saying “this VC corresponds to an attribute/role defined
in a specific AC policy”. This function can be considered
the component that facilitates interoperability among ACMs,
similarly to meta-access control models [26].

We define a function χ that maps access control policies to
VPs. This function bridges the access control policies used by
conventional ACMs with peer-to-peer interactions supported
by a trusted data verifier. Function χ can be defined in 1) an
ad-hoc way, 2) automated by parsing the schema fields and
creating a VP containing the same fields, plus a condition de-
fined on the access control policy. Verifiable presentations are
then tied to an access control request, requested by verifiers.
Verifiers can also be providers of resources (i.e., the entity
processing the access control request is the same that holds
and delivers the resource).

The infrastructure supporting the issuing of DIDs, VCs,
and VPs is a verifiable data registry (in our specific case,
a verifiable credential registry). This data registry can be
decentralized, e.g., a blockchain. For instance, a blockchain
can record the schema of a verifiable credential, along with
its issuer: this allows peer-to-peer validation of VCs without
resorting to the issuer.

We define our model rigorously as follows:

SSIBAC components
• a set of users U = {u1, u2, ...}. Each useri is identified

by a DID and holds a public/private key pair (Ki
p, Ki

s)
associated to that DID and a set of VCs Li = {li1, li2, ...};

• a set of resources R = {r1, r2, ...};
• a set of issuers I = {i1, i2, ...} that issue VCs for users;
• a set of verifiers V = {v1, v2, ...} who request VPs and

mediate the access control flow. Typically, they are also
resource providers;

• a set of permission validators P = {p1, p2, ...};

Fig. 1: Access control flow enforced by the SSIBAC model

• a set of injective functions ψ = {ψ1, ψ2, ...}, such that
ψi : Li → Pk, i.e., function ψi maps the VCs from useri
to permission validator Pk;

• an injective function χ : AC → VPR, mapping access
control policies to VPRs.

Besides the core components, SSIBAC has several input
parameters, which can be set before instantiation or computed
at run-time.

SSIBAC parameters
• a set of supporting ACMs M;
• a set of access control policies AC, representing the rules

of a particular business context;
• a set of VPs VP , translated from access control policies;
• a Verifiable Data Registry B, the trust anchor for the peer-

to-peer interactions (allows checking the validity of DIDs,
VCs, and VPs).

Figure 1 illustrates the access control flow enforced by our
model. A user is issued verifiable credentials (steps 1 and 2),
which are rooted in a verifiable credential registry (3). The
user then requests access to a set of resources (4). The verifier
creates a VPR from the access control policy underlying the
requested resource. This access control policy may be collected
from a trusted PRP (5) and sends it to the user (6). The verifier
assumes that the user owns the necessary attributes on the
verifiable credentials to be able to respond to the challenge.
After the challenge is sent in the form of a VP (7) and validated
(8), the verifier gives as input the result of the validation
process to an access control engine (or PDP) (9, 10). The result
of the decision may be influenced by extra factors, e..g. the
context of the request. If the decision from the access control
engine is ALLOW, access to the resource is provided (11, 12).

IV. AUTHENTICATION AND ACCESS CONTROL WITH
SSIBAC AND ABAC

In this section, we describe SSIBAC instantiated with the
ABAC model. We chose ABAC because it is much adopted

and provides fine-grained and flexible access control [27].

A. System Description and Assumptions

To integrate decentralized identity with attribute-based ac-
cess control, attributes need to be issued to a specific DID.
This can be accomplished using VCs [13].

We instantiate the SSIBAC model with M = {ABAC}, a
user u1, an issuer i1, a verifier v1, one resource r1, a public
blockchain B. The permission validator p1 is the attribute
from ABAC (ψ1 : L1 → {p1}) . In other words, our access
control engine will calculate an access control decision based
on ABAC/XACML access control policies, so we need VPs to
encode user attributes. Let L1 represent the subset of verifiable
credentials held by user u1, and let Λ1 = {λ1, ..., λi} be a
subset of attributes derived from L1.

Function χ maps a verifier’s access control policy AC1,
containing the rules to access r1, to a VPR, by parsing the
schema fields from the VC(s), as well as the access control
policy, and the necessary conditions for an ALLOW decision.
The VPR is issued by v1, while the corresponding VP, VP1

generated by u1. Access to a certain resource is granted given
that v1 returns an ALLOW decision, under the condition that
the result of the VPR, VP1, is true. In other words, the AC1

encoded by VPR, and evaluated by VP1, is satisfied.
The access control decision could be comprised of a more

complex policy, e.g., the result of VP1 and a set of contextual
conditions, such as the day of the week. For this, the PIP could
be hybrid: sensitive data is owned by the subject, whereas
general information used to identify him is also saved on a
local database. User attributes are mapped to the verifiable
credentials emitted to a specific DID, i.e., the subject holding
ownership of the DID, with a specific schema. The access
control policies are mapped to VPRs made on-chain. By
doing so, we allow users to keep their information private, as
verifiable presentations can handle selective disclosure based
on zero-knowledge proofs [13].

Fig. 2: SSIBAC in a multi-organizational setting, in light of
the XACML standard perspective

Figure 2 shows how ABAC components are integrated
within SSIBAC. One can observe that the verifier acts as both
PEP and PAP. It allows or denies access to resources through
access control policies, and administrates such policies. The
access control engine contains a PDP that can be embedded
in the verifier, or be an external component. We opted for a
centralized PDP, although decentralized ones are possible and
have been implemented [27].

We remark that a decentralized PIP may be used. Sensitive
information for enabling access control decisions can be held
by the subject. A combination of a subject-owned PIP and a
traditional, local PIP can be useful: sensitive attributes can be
kept private by the subject, while other attributes such as the
user ID are stored by the organization.

B. Threat Model and Security Requirements

Regarding SSIBAC’s threat model, we assume an honest-
but-curious verifier. This means that the verifier performs
the access control decision honestly, but may try to learn
about the users’ attributes. Since verifiable presentations are
supported by ZKPs, the verifier will, very likely, obtain incom-
plete information – selective disclosure is achieved. However,
selective disclosure is usually not enough, as organizations
can collude to cooperatively infer information about the user.
Thus, unlinkability [28] is also desired. Our model achieves
unlinkability given that a person utilizes a DID for each
specific purpose.

The security requirements are threefold:
1) Selective choice of participants: only users holding the

VCs which map to the permission validators required in
an access control policy can access the resources specified
on the same access control policy.

2) Data confidentiality: recalling Principle 3, the access
control engine should perform decisions based on the least
information possible. The ZKPs allows a user to disclose
as least information as possible.

3) Accountability and non-repudiation: issuers are held ac-
countable for the VCs they issue. User credentials are
auditable, as the blockchain provides the trust anchor for
checking its validity. In other words, a verifier can verify
that the presented credentials are valid and come from

a trusted party, at its description. We provide a trade-
off between privacy and accountability as the interactions
between DIDs are peer-to-peer and thus not necessarily
recorded; unlinkability is established if a DID interacts
does not interact with several parties, disclosing (part) of
their VCs.

V. EVALUATION

In this section, we evaluate an instance of SSIBAC based
on the real-world use case scenario from the European Com-
mission (EC) project QualiChain.3

A. Use Case: Decentralised Qualifications

The QualiChain project aims to propose a blockchain-
based approach for disrupting the archiving, management,
and verification of educational and employment qualifications.
In particular, QualiChain will support the storage, sharing,
and verification of academic and other qualifications along
with several additional services, provided by the platform. To
comply with GDPR legislation, and protect its users’ privacy
and data, a non-intrusive access control mechanism has to be
deployed. In particular, QualiChain aims to follow the principle
of context-based privilege, in which only the strictly necessary
data to provide a service is requested from the diploma holder.

This project has several stakeholders:
• certification seekers, e.g., graduated students. They are

referred to as diploma holders upon receiving a verifiable
credential for their diploma;

• certification providers, e.g., higher education institutes;
• certification validators, e.g., potential employers.
Universities issue verifiable credentials for students, which

can be used to authenticate on the QualiChain platform. It is
desirable to use SSI-based access control in this scenario so
that QualiChain does not need to store any personal data: ac-
cess to services is provided on-demand, based on the verifiable
proofs that the student provides.

SSIBAC can be useful for access control in QualiChain. We
focus on granting a diploma holder access to a service provided
by QualiChain. Figure 3 illustrates this process.

We instantiate our model defined in Section IV with u1 =
Alice , i1 = IST , v1 = QualiChain , and r1 = JobOffers , a
service provided by the QualiChain Platform. In this use case,
a recent graduate, Alice, requires a university diploma in the
form of a VC from a higher education institution, IST (step
1). The university issues a VC to Alice, and publishes the
corresponding proof on a decentralized ledger, in our case the
Sovrin blockchain based on Hyperledger Indy (steps 2 and 3).
Listing 1 depicts the credentialSubject schema issued for the
student. Alice now becomes a diploma holder.

Upon accessing the platform, which may require Alice a
VP certifying she owns a non-revoked VC issued by IST,
Alice can have access to several services. We consider the job
offer service, enabling PhD diploma holders to find research

3https://qualichain-project.eu/

Fig. 3: SSI-based ACM applied to the QualiChain scenario

1 "firstName": "Alice",
2 "lastName": "Anderson",
3 "age": 25,
4 "id": "1234",
5 "timestamp": 1590092610,
6 "degree": {
7 "university": "IST",
8 "type": "BachelorDegree",
9 "name": "Bachelor of Science", "EQF": "6",

10 "course": "Computer Science",
11 "grade": "4",
12 "gradeScale": "0-4",
13 "skills": "[]",
14 "degreeId": "80970"
15 },
16 "metadata": [...],
17 "proof": [...]

Listing 1: High-level example of a verifiable credential, is-
sued for Alice, LAlice. ΛAlice = {firstName, LastName, ... ,
degreeId}, p1 = attribute (VC mapped to attributes by χ), χ
parses the VC fields such that it outputs a VP containing a
challenge invoking a subset of ΛAlice

positions, available for people with a European Qualification
Framework4 level higher than 6 (MSc and PhD graduates).

Alice would like to access the service that allows searching
for job offers on research positions (step 4). In order to provide
her access to that service (a resource), QualiChain creates a
VPR and sends it to Alice (steps 5 and 6). The VP encodes
the access control policy for accessing the researcher position
service: if the “EQF” field of a diploma holder is higher
than 6, access to the service is provided. Alice constructs and
provides the corresponding ZKP (step 7), and the QualiChain

4https://www.cedefop.europa.eu/en/events-and-projects/projects/european-
qualifications-framework-eqf

agent verifies that such VP is true (step 8). After validating
that the proof comes from Alice, it redirects the result to
the access control engine (step 9), which later returns the
processing outcome (steps 10 and 11). The access control
policy states that if the result from the VP is true, then access is
granted. However, additional checks could be performed (e.g.,
the access control engine could verify if Alice had already
accepted another job offer). If the verifiable presentation is
valid, it means that it satisfies the encoded access control policy
sent on step 6. As Alice’s EQF is not higher than 6, Alice
cannot access the desired service (steps 12 and 13 do not take
place).

B. Implementation

We now describe the implementation of the SSIBAC proto-
type and the experimental setting.

As our Verifiable Credential Registry B, we chose Hyper-
ledger Indy [29]. Hyperledger Indy is a state-of-the-art public
blockchain that provides “tools, libraries, and reusable compo-
nents for providing digital identities”. The Hyperledger Aries
project [30] was leveraged to create agents (representations of
users) that manage their wallets and perform operations on
the distributed ledger. Aries serves as the infrastructure for
“blockchain-rooted, peer-to-peer interactions”. In other words,
we mediate communication between agents and the supporting
blockchain through Aries. We based our implementation on the
demo provided by Hyperledger Aries.5

We ran our experiments on the GreenLight Dev Ledger6

provided by the VON blockchain test net. We leveraged
Google Cloud Platform as our infrastructure. A c2-standard-8

5https://github.com/hyperledger/aries-cloudagent-python
6http://dev.greenlight.bcovrin.vonx.io/

(8 vCPUs, 32 GB memory) virtual machine running Ubuntu
20.04 was used. After the appropriate setup, we deployed three
Docker containers, each representing an agent: Alice, IST, and
QualiChain. A fourth agent was deployed to aid the evaluation
process, by collecting information on the performance of the
process. We executed each experiment 100 times and discarded
the first and the last 10 to avoid outliers. In total, we executed
400 experiments.

C. End-to-End Latency

First, we measure the end-to-end latency of the process. For
that, we divide our process into three phases: startup, connect,
and access control.

The Startup phase comprises the time to set up the necessary
infrastructure for conducting access control based on decen-
tralized identity. In particular, this phase includes the time the
system needs to register the agents’ DIDs into the blockchain,
the time to initialize the four agents (Alice, IST, QualiChain,
and Performance), and the time for the IST agent to publish
the schema of a university degree.

The Connect phase connects the agents, exchanges verifi-
able credentials, and prepares the environment for the access
control phase. Alice connects to IST, IST issues a variable
number of verifiable credentials to Alice, and after that posts
a corresponding proof on the blockchain. Next, Alice connects
to the QualiChain agent.

In the Access Control phase, Alice requests a resource
from QualiChain. QualiChain requests a verifiable presentation
(output of χ) that contains the necessary permission validators
(attributes Λ1, according to ψ) in order to conduct the access
control process (conducted by ABAC). Alice constructs the
proof and sends it to QualiChain. QualiChain then handles the
proof, confirms its validity, and conducts the access control
process.

Fig. 4: Latency depending on the number of emitted credentials

Figure 4 depicts the cumulative time necessary to conduct
each phase, in seconds, as a function of the number of cre-
dentials emitted to Alice. The Startup phase takes 29.1, 28.5,
28.0, and 28.7 seconds if the number of verifiable credentials
issued was 1, 10, 100, or 1000, respectively. Conversely, the

Fig. 5: Duration of the various steps in the Connecting and
access control phases (startup phase omitted), with 10 issued
credentials

Connect phase took 1.3, 2.5, 12.0, and 109.0 seconds. A
linear regression for these results yields the function t(n) =
1.283 + 0.108n, where t(n) is the Connect time and n the
number of credentials. The access control phase took 0.9
seconds regardless of the number of credentials. Table I depicts
the latency associated with each phase of the access control
process, as a function of the number of credentials issued.
One can observe that the average duration of the Startup and
Access Control phases is practically constant. The constant
startup phase duration is expected, as no step of this phase
depends on the number of issued credentials.

The Startup phase is a major bottleneck, accounting for
most of the duration of the overall process (92.9%, 89.3%,
68.4%, and 21.9% for 1, 10, 100 and 1000 issued credentials
respectively). For a system issuing a large number of VCs,
the Connect phase is the bottleneck. As shown before, the
system scales linearly with the number of credentials emitted.
As credentials will not be emitted regularly, the Connect phase
duration can be significantly reduced. Figure 5 represents the
sub-phase duration for the Connect and Access Control phases.
The overall process takes 3.39 seconds (considering 10 issued
credentials), being the credential issuing step responsible for
66% of the connecting phase and access control phases to-
gether (2.23 out of 3.39 seconds).

For a single credential, the first access control request
can take up to around 31.4 seconds (Startup, Connecting,
and Access Control phases) or 2.23 seconds (Connecting and
Access Control phases) to be served. In particular, the Startup
and Connecting phases require setting up infrastructure and
peer-to-peer connections specific to our experimental setting,
which explains high latencies. In practice, the full process of
credential issuance and a subsequent access control request
should normally take around 2.23 seconds. In the QualiChain
scenario, the attributes do not vary frequently, so we deem this
latency suitable.

TABLE I: Evaluation of latency as a function of the number of credentials

Credentials
Process Phase Startup Connecting Access Control Total Time

µ σ2 µ σ2 µ σ2

1 Credential 29.14 5.5 1.30 0.03 0.92 1.05 31.36
10 Credentials 28.53 5.24 2.47 0.09 0.92 1.05 31.92
100 Credentials 28.00 4.85 11.97 0.33 0.92 1.05 40.89
1000 Credentials 28.68 4.84 108.93 0.92 0.92 1.05 130.53

D. Throughput

The throughput in terms of access control requests per
second is associated with the latency of the previous phases.
Credentials are issued during the Connecting phase, with about
9.3 credentials issued per second for 1000 credentials (see
Table I). This limit is due to sequential processing in our
demo application, since all credentials are sequentially created,
signed and submitted. The throughput performance is also tied
to the hardware in which the experiment is running and the
throughput of the Hyperledger Indy consensus algorithm.

The time for evaluating the access control policy is negligi-
ble, as we achieve around 55,000 access control evaluations per
second considering only the Access Control Phase. Consider-
ing that the necessary credential for the verifiable presentation
has been emitted and belongs to the subject, the time needed
for processing each access control decision is 0.9 seconds.

E. Revocation

Credential revocation is an important concern for access
control systems. If a credential is revoked (e.g., the university
revokes Alice’s diploma), the verification of the presentation
by the verifier will fail. Thus, when Alice attempts to access
a resource using her revoked VC, access will be denied. This
does not incur a performance degradation of our system, as
the process is the same with a valid credential, and revoking
a credential only costs a transaction.

VI. RELATED WORK

Ferdous et al. formalize the concept of SSI and show how
it can be integrated with the lifecycle of an IDMS [31].
They envision blockchain-based smart contracts to provide
a decentralized environment where SSI can be successfully
applied. However, no solution is implemented, and it is not
clear how SSI can be applied to access control. Coelho et
al. detail a self-sovereign identity system [32] using roles,
attributes, policies, and user wallets. The proposed system does
not support multiple ACMs, and lacks an implementation.

Several authors provide an overview of SSI, but do not
elaborate on any implementation or real-world applications
[33], [34]. Others present SSI solutions for several domains
such as healthcare [35], [36], or general identity management
systems [8], [37]. However, either access control is not the
focus of the paper, authors do not provide an implementation
of such a system, or validation through a real-world scenario
is missing.

In recent years several authors proposed a variety of
blockchain-based access control schemes. Maesa et al. pro-
posed a general blockchain-based access control system using

ABAC, XACML-coded policies, and the Ethereum blockchain
[38]. There are also attempts to decentralize the access con-
trol decision engine, therefore providing support for dynamic
access control policies, as well as distributed policy decision
engines [27]. Despite authorization being decentralized, data
sovereignty is not achieved (authentication is partially central-
ized).

On the contrary of most of these works, our approach
provides access control based on decentralized authentication,
leaving the user in control of identity data. Moreover, our work
goes beyond existing work by providing a formalization of an
ACM following the concepts of SSI, while also implementing
it as part of an education ecosystem use case. Finally, we pro-
vide not only flexibility at the ACM level but also portability
regarding the user identity.

VII. CONCLUSION

In this paper, we propose the Self-Sovereign Identity Based
Access Control (SSIBAC), the first approach to access control
based on decentralized identity. We explore this topic by in-
stantiating our SSIBAC model with attribute-based access con-
trol, which is applied to a real-world case, the EU QualiChain
project. Our implementation assures that the context-based
privilege is achieved, by promoting peer-to-peer interactions,
providing the basis for the access control process. Our ex-
perimental evaluation shows that each access control request
can be served in around 0.9 seconds. Although more time-
consuming than traditional centralized access control systems,
access control based on self-sovereign identity can alleviate
the data privacy problem, which we consider an acceptable
trade-off for applications not requiring high throughput.

Our work has some limitations. The trust of the system is
strongly tied to a single access control engine, so verifiers are
single points of failure. We plan to address these limitations in
future work, e.g., by decentralizing the access control engine
and conducting the authorization process in a distributed
and decentralized way (for example using a smart contract).
This provides accountability and non-repudiation with regard
to verifiers. An additional future work direction is to ex-
plore cross-chain authorization, leveraging recent blockchain
interoperability techniques. This would allow us to provide
decentralized authorization by binding verifiable presentations
to jointly agreed access control policies.

ACKNOWLEDGMENT

We thank the reviewers that provided suggestions to improve this
paper. This work was supported by the European Commission pro-
gram H2020 under the grant agreement 822404 (project QualiChain)
and by national funds through Fundação para a Ciência e a Tecnologia

(FCT) with reference UIDB/50021/2020 (INESC-ID). The authors
thank Google for the Google Research Program grant that supported
this research.

REFERENCES

[1] H. Martins and S. Guerreiro, “Access Control Challenges in Enterprise
Ecosystems: Blockchain-Based Technologies as an Opportunity for En-
hanced Access Control,” in Global Cyber Security Labor Shortage and
International Business Risk. IGI Global, 2018, vol. i.

[2] D. Maesa, P. Mori, and L. Ricci, “A blockchain based approach for the
definition of auditable access control systems,” Computers & Security,
vol. 84, pp. 93–119, 2019.

[3] Verizon, “2020 Data Breach Investigations Report,” Verizon, Tech.
Rep., 2020. [Online]. Available: https://enterprise.verizon.com/resources/
reports/2020-data-breach-investigations-report.pdf

[4] European Parliament and European Council, “Regulation 2016/679 of
the European Parlament and of the council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing - Directive
95/46/EC,” 2016.

[5] C. Barrett, “Are the EU GDPR and the California CCPA becoming the de
facto global standards for data privacy and protection?” Scitech Lawyer,
vol. 15, no. 3, pp. 24–29, 2019.

[6] C. Allen, “The path to self-sovereign identity,” Life with Alacrity, 2016.

[7] G. Kondova and J. Erbguth, “Self-sovereign identity on public
blockchains and the GDPR,” Proceedings of the ACM Symposium on
Applied Computing, pp. 342–345, 2020.

[8] F. Wang and P. De Filippi, “Self-Sovereign Identity in a Globalized
World: Credentials-Based Identity Systems as a Driver for Economic
Inclusion,” Frontiers in Blockchain, vol. 2, p. 28, 1 2020.

[9] N. Sakimura, NRI, J. Bradley, Ping Identity, M. Jones, Microsoft,
B. Medeiros, Google, C. Mortimore, and Salesforce, “OpenID Connect
Core 1.0 incorporating errata set 1,” 2014. [Online]. Available:
https://openid.net/specs/openid-connect-core-1_0.html

[10] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein,
“Federated security: The Shibboleth approach,” Educause Quarterly,
vol. 27, no. 4, pp. 12–17, 2004.

[11] R. Oppliger, “Microsoft .NET Passport and identity management,” In-
formation Security Technical Report, vol. 9, no. 1, pp. 26–34, 2004.

[12] C. Schläger, M. Sojer, B. Muschall, and G. Pernul, “Attribute-based au-
thentication and authorisation infrastructures for e-commerce providers,”
in Lecture Notes in Computer Science, 2006.

[13] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials
Data Model 1.0: Expressing verifiable information on the Web (W3C
Recommendation),” 2020. [Online]. Available: https://w3c.github.io/
vc-data-model/

[14] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey
on Blockchain Interoperability: Past, Present, and Future Trends,” arXiv,
2020. [Online]. Available: http://arxiv.org/abs/2005.14282

[15] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello,
and J. Holt, “Decentralized Identifiers (DIDs) v1.0: Core architecture,
data model, and representations - W3C Working Draft 23 July 2020,”
2020. [Online]. Available: https://w3c.github.io/did-core/

[16] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials
Data Model 1.0,” 2020. [Online]. Available: https://www.w3.org/TR/
vc-data-model/

[17] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and
K. Scarfone, “Guide to attribute based access control ABAC definition
and considerations,” NIST Special Publication, 2014.

[18] L. Florio and K. Wierenga, “Eduroam, providing mobility for roaming
users,” in Proceedings of the EUNIS 2005 Conference, Manchester, 2005.

[19] H. L’Amrani, B. E. Berroukech, Y. El Bouzekri El Idrissi, and R. Ajhoun,
“Toward interoperability approach between federated systems,” in Pro-
ceedings of the 2nd international Conference on Big Data, Cloud and
Applications, 2017.

[20] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov.
1976.

[21] D. Ferraiolo and R. Kuhn, “Role-Based Access Control,” in In 15th NIST-
NCSC National Computer Security Conference, 1992, pp. 554–563.

[22] V. Hu, D. Ferraiolo, R. Chandramouli, and R. Kuhn, Attribute-Based
Access Control. Artech House, 2017.

[23] R. S. Sandhu and P. Samarati, “Access Control: Principles and Practice,”
IEEE Communications Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[24] R. Erik, “OASIS eXtensible Access Control Markup Language
(XACML) Version 3.0,” Oasis, Tech. Rep., 2013. [Online]. Available:
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

[25] S. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role Based Access
Control Models,” Computer, vol. 29, no. 2, pp. 38 – 47, 1996.

[26] S. Guerreiro, Challenges of Meta Access Control Model Enforcement to
an Increased Interoperability. IGI Global, 2018, vol. 43, no. 01.

[27] S. Rouhani, R. Belchior, R. S. Cruz, and R. Deters,
“Distributed Attribute-Based Access Control System Using a
Permissioned Blockchain,” arXiv pre-prints, 2020. [Online]. Available:
http://arxiv.org/abs/2006.04384

[28] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudonymity: a proposal for terminology,” in Designing privacy en-
hancing technologies. Springer, 2001, pp. 1–9.

[29] Hyperledger Contributors, “Hyperledger Indy,” 2020. [Online].
Available: https://www.hyperledger.org/use/hyperledger-indy

[30] Hyperledger, “Hyperledger Aries,” 2020. [Online]. Available: https:
//www.hyperledger.org/use/aries

[31] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In Search of Self-
Sovereign Identity Leveraging Blockchain Technology,” IEEE Access,
vol. 7, pp. 103 059–103 079, 2019.

[32] P. Coelho, A. Zúquete, and H. Gomes, “Federation of attribute providers
for user self-sovereign identity,” Journal of Information Systems Engi-
neering & Management, vol. 3, no. 4, 2018.

[33] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity,” Computer Science
Review, vol. 30, pp. 80–86, 11 2018.

[34] N. Naik and P. Jenkins, “Self-Sovereign Identity Specifications: Govern
Your Identity Through Your Digital Wallet using Blockchain Technol-
ogy,” in IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, 2020, pp. 90–95.

[35] B. Houtan, A. S. Hafid, and D. Makrakis, “A Survey on Blockchain-
Based Self-Sovereign Patient Identity in Healthcare,” IEEE Access,
vol. 8, pp. 90 478–90 494, 2020.

[36] A. Othman and J. Callahan, “The Horcrux protocol: A method for
decentralized biometric-based self-sovereign identity,” in Proceedings of
the IEEE International Joint Conference on Neural Networks, 10 2018.

[37] T. Zhou, X. Li, and H. Zhao, “EverSSDI: Blockchain-based framework
for verification, authorisation and recovery of self-sovereign identity
using smart contracts,” International Journal of Computer Applications
in Technology, vol. 60, no. 3, pp. 281–295, 2019.

[38] D. Maesa, P. Mori, and L. Ricci, “A blockchain based approach for the
definition of auditable Access Control systems,” Computers and Security,
vol. 84, pp. 93–119, 2019.

