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Blockchain interoperability reduces the risk of investing in blockchain systems by avoiding vendor
lock-in, enabling a new digital economy, and providing migration capabilities. However, seamless
interoperability among enterprises requires service providers to comply with different regulations, e.g.,
data privacy regulations and others that apply to financial services. For supporting interoperability,
organizations can connect to each blockchain via a gateway. However, these gateways should be
resilient to crashes to maintain a consistent state across ledgers. To realize this vision, we propose
Hermes, a fault-tolerant middleware that connects blockchain networks and is based on the Open
Digital Asset Protocol (ODAP). Hermes is crash fault-tolerant by allying a new protocol, ODAP-2PC,
with a log storage API that can leverage blockchain to secure logs, providing transparency, auditability,
availability, and non-repudiation. We briefly explore a use case for cross-jurisdiction asset transfers,
illustrating how one can leverage Hermes to support cross-chain transactions compliant with legal
and regulatory frameworks.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

There is an increasing interest in digital currencies and virtual
ssets as the foundation of the next generation digital economy.
lockchain technology has been shown to be a dependable en-
bler due to its properties, such as immutability, transparency,
nd auditability [1–3]. Both private organizations and govern-
ents are actively investigating and investing in blockchain-
ased digital assets by, for example, promoting new platforms
or digital transactions [4]. A key challenge to enabling this dig-
tal economy is to safely connect different networks, enabling
etwork effects among them [5–7].
Interoperability of blockchains is, therefore, key to the area [2,

–10]. Hash lock time contracts, sidechains, oracles and relays,
nd exchanges are already allowing users to take advantage
f this new digital economy in a permissionless environment
see [11] for a detailed survey on the topic).

Although significant progress on interoperability has been
ade, public blockchains, private blockchains, and legacy sys-

ems cannot communicate seamlessly yet [11]. Moreover, current
olutions are not standardized and do not offer the possibility
o seamlessly transfer data and value across legal jurisdictions,
ampering enterprise adoption of blockchain. There is a need for
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building solutions capable of complying with legal frameworks
and regulations.

We believe that similar to Internet routing gateways, which
enabled interoperability around private networks, and fostered
the rise of the Internet, the global network of decentralized
ledgers (DLTs) will require blockchain gateways [2,6]. Gateways
permit digital currencies and virtual assets to be transferred
seamlessly between these systems. Within the Internet Engi-
neering Task Force (IETF), there is currently ongoing work on
an asset transfer protocol that operates between two gateway
devices, the Open Digital Asset Protocol (ODAP) [2]. ODAP is a
cross-chain communication protocol handling multiple digital
asset cross-border transactions by leveraging blockchain gate-
ways. Gateways agree on the assets to be exchanged via an asset
profile, i.e., a structured, regulation-compliant data model for
representing assets (e.g., digital, physical). Transferring an asset
among blockchains via gateways is equivalent to an atomic swap
that locks an asset in a blockchain and creates its representation
on another. However, how can one guarantee a fair exchange of
assets (either all parties receive the assets they requested, or none
do) across gateways?

To assure the properties that enable a fair exchange of assets,
blockchain gateways must operate reliably and be able to with-
stand a variety of attacks. Thus, a crash-recovery strategy must
be a core design factor of blockchain gateways, where specific
recovery protocols can be designed as part of the digital asset
transaction protocol between gateways. A recovery protocol, al-
lied to a crash recovery strategy, guarantees that the source and

https://doi.org/10.1016/j.future.2021.11.004
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target DLTs are modified consistently, i.e., that assets taken from
the source DLT are persisted into the recipient DLT, and no double
spend can occur.

We present Hermes,1 a middleware for blockchain interop-
rability that focuses on providing crash recovery capabilities
o gateways. The main component of Hermes is an extension
f the ODAP protocol that we also introduce in this paper. We
enominate this protocol ODAP-2PC as it is inspired in the two-

phase commit protocol (2PC) [13,14]. Hermes also leverages a
log storage API that persists evidence on asset transfer pro-
cesses across gateways for posterior accountability and dispute-
resolution. Hermes’s architecture is layered, allowing for cross-
chain logic (implemented by business logic plugins, or BLPs [15])
to be executed among gateways.

By modeling and developing this system, we expect to address
four research questions:

• RQ1 What is the reliability of a cross-chain transaction is-
sued by a gateway, i.e., how can one be sure that a gateway
can effectively deliver transactions?

• RQ2 What is the trade-off between resiliency and perfor-
mance of gateways?

• RQ3 How decentralized is Hermes, and how can it be ac-
countable for the transactions it manages?

• RQ4 What to expect in terms of security and privacy of
gateway-based interoperability solutions?

The contributions of this paper are three-fold: first, the
blockchain (or DLT) gateway concept is explained from a theo-
retical and practical perspective. Second, we present the Hermes
ault-tolerant middleware and its main component, ODAP-2PC, a
ew protocol that provides ACID properties for cross-blockchain
ransactions. ODAP is also presented. A preliminary implementa-
ion of ODAP2 is available at Hyperledger Cactus, an Hyperledger
Foundation project dedicated to DLT interoperability.3 We pro-
ide a comprehensive discussion on Hermes as a solution for
lockchain interoperability, focusing on the four research ques-
ions we address. Third, and lastly, we present a use case on the
xchange of promissory notes across jurisdictions. This use case
llustrates how one can leverage Hermes to achieve blockchain
interoperability compliant with legal and regulatory frameworks.
To be clear, Hermes and ODAP-2PC are contributions of this
paper, whereas ODAP is a protocol being designed in the context
of the IETF, although by some of the authors of the present paper.

The rest of this paper is structured as follows: Section 2
presents the background. We introduce the gateway concept
and Hermes, in Section 3. After, in Section 4, we present ODAP,
including the message and logging procedure, the log storage API,
and the distributed recovery protocol (Sections 4.2, 4.3, and 4.4,
respectively). Section 5, presents a use case that benefits from
Hermes. Section 6 presents our discussion on gateways, ODAP,
and ODAP-2PC in the light of the presented research questions.
The related work follows, in Section 7. Finally, we conclude the
paper in Section 8.

2. Preliminaries

This section presents the background on fault tolerance, atomic
commit, and nomenclature both on logging and blockchain inter-
operability.

1 A preliminary, short, version of this paper appears in IEEE SCC 2021 [12].
2 We plan to study the performance of our implementation as future work.
3 https://github.com/hyperledger/cactus.
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Fault tolerance
A fault is an event that alters the expected behavior of a

ystem. Faults can imply the transition from a correct state of
he system to an incorrect state, called errors. Errors can provoke
ailures if the system deviates from its specification, possibly caus-
ng loss of information or compromising business logic. Nodes can
xperience failures where for various reasons (e.g., power outage,
etwork partitions, faulty components). We consider four failure
ypes: message loss, communication link failure, site failure, and
etwork partition. Albeit common, failures can be detected by
ifferent mechanisms, such as timeouts, defined as the upper
ound δt that a message is expected [13].

Fault recovery
Typically, crash fault-tolerant (CFT) services can tolerate n

2
odes crashing, with n being the number of nodes. As long as
here is a majority of nodes with the latest state, failures can be
olerated. The primary-backup model defines a set of n hosts (or
odes) that, as a group, assures service resiliency, thus improving
vailability. In this model, an application client sends messages
o a primary node P . The primary nodes redirects the message
pdates to a set of replicas (backups) B = {B1, . . . ,Bn}, when
t receives a message. The backup server k propagates the new
ncoming message to the backup server k+1, k ≤ n, k ∈ R.
ode P is then notified of an update when n-host resiliency is
et, i.e., the message was at least replicated in n nodes. Should
uch acknowledgment fail to be retrieved by P , a message update
equest is re-sent. If P crashes, then a new leader Pnew ∈ B is
lected. If a backup node receives a request from the application
lient, it redirects it to P , only accepting it when the latter
ends the update request. When an update is received, P sends
he message update to its right-hand neighbor, sending back an
cknowledgment.
Another recovery mechanism is self-healing [13]. In self-

ealing, when nodes crash, they are assumed to recover even-
ually. While this mode is cheaper than primary backup, fewer
odes, fewer exchanged messages, and lower storage require-
ents, it comes at the expense of availability. In particular, the
rotocol may block until nodes recover. Fig. 1 depicts a simplified
elf healing protocol for two nodes. Node P sends a ping to node
, which responds with an ACK. In case of a crash, node B awaits
ping.

tomic commit protocols
An atomic commit protocol (ACP) is a protocol that guarantees

set of operations being applied as a single operation. An atomic
ransaction is indivisible and irreducible: either all operations
ccur, or none does. ACPs consider two roles: a Coordinator that
anages the execution of the protocol, and Participants that man-
ge the resources that must be kept consistent. ACPs assume
table storage with a write-ahead log (a history of operations is
ersisted before executed). Examples of ACPs are the two-phase
ommit protocol, 2PC, the three-phase commit protocol, 3PC, and
on-blocking atomic commit protocols [13].
2PC achieves atomicity even in case of temporary system

ailure, accounting for a wide adoption in academia and in the
ndustry. It has two phases: the voting phase and the commit
hase. In the voting phase, the Coordinator prepares all partic-
pants to take place in a distributed transaction by inspecting
ach participant’s local status. Each participant executes eventual
ocal transactions required to complete the distributed transac-
ion. If those are successful, participants send a YES response
o the Coordinator, and the protocol continues. Else, if the NO
esponse is sent, it means that the participant chose to abort;
his happens when there are problems at the local partition. Next,
n the commit phase, when the Coordinator obtains YES from all

https://github.com/hyperledger/cactus
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Fig. 1. Self-healing mode with two nodes.

participants, a COMMIT message is sent to the participants that
oted YES. This message triggers the execution of local transac-
ions that implement the distributed transaction. Otherwise, the
oordinator sends an ABORT message, triggering a rollback on

each local partition.

Logging
A log L is a list of log entries {l1, l2, . . . , ln} such that entries

ave a total order, given by the time of its creation. A log is
onsidered shared when a set of nodes can read and write from
he log. On the other hand, a log is private (or local) when only
ne node can read and write it. Logs are associated to a process
running operations on a certain node. We denote the nth step
f process p as (n, p). We denote the ith log entry, as li, and the
og entry referring to process p and step k as lp,k. Both i and
are monotonically increasing positive integers. To manipulate

he log, we define a set of log primitives, that translate log entry
equests from a process p into log entries. The log primitives
re writeLogEntry (writes a log entry), getLogLength (obtains the
umber of log entries), and getLogEntry(i) (retrieves a log entry
i). A log entry request typically comes from a single event in a
iven protocol.
A log storage API provides access to the primitives. Log entry

equests have the format <phase, step, operation, nodes>,
here the field operation corresponds to an arbitrary command
nd the field nodes to the parties involved in the process p. We
efine five operations types to provide context to the protocol
eing executed:

• Operation type init- states the intention of a node to execute
a particular operation.

• Operation type exec- expresses that the node is executing
the operation.

• Operation type done- states when a node successfully exe-
cuted a step of the protocol.

• Operation type ack- refers to when a node acknowledges a
message received from another.

• Operation type fail- indicates to when an agent fails to
execute a specific step.
238
The field nodes contains a tuple with a node A issuing a
ommand, or a node A commanding a node B the execution of
command c , if the form is A or A → B (c may be omitted),

espectively.
Fig. 2 illustrates the logging procedure of some process (or

rotocol) A, executed by two nodes: Node and Node 2. Pro-
ess A has three steps. While typically each gateway has its log
and log storage API), we only represent one for simplicity. Note
hat nodes can also have a common log. Log entry l1 = linit,1
orresponds to the node’s first message to the log storage API,
hich on its turn persists it on a log, using the writeLogEn-
ry primitive. The log storage API writes the message that is
eceived. For instance, in step 2, the log storage API executes
riteLogEntry<Process A, 1, init-node, Node>. Log entry l1 is
reated in step (2), coming from the command issued at step
. Conversely, writing l2 = linit,2 (steps 4 and)) corresponds
o the command that the node issues towards node 2 (step 6),
nitAllNodes, which causes node 2 to issue an init operation. Log
ntry linit,3 corresponds to the execution of init by Node 2 (step
). At step 12, getLogLength returns 3.

lockchain interoperability
A recent survey classifies blockchain interoperability studies

n three categories: Cryptocurrency-directed interoperability ap-
roaches, Blockchain Engines, and Blockchain Connectors [11].
ryptocurrency-directed approaches enable the transfer of digital
ssets (e.g., cryptocurrencies) across homogeneous and heteroge-
eous blockchains. The cryptocurrency-directed approaches typ-
cally rely on protocols leveraging public blockchains, as they as-
ume that gateways are not trusted. As a result, these approaches
re challenging to integrate with permissioned blockchains that
upport arbitrary assets and smart contracts.
The second category is the blockchain engines, enabling an

pplication-specific blockchain that can communicate with its
ther instances. These solutions can benefit from implementing
ateways, providing each application-specific blockchain (e.g., ap-
lications running on a parachain) self-sovereignty regarding
ommunications with other blockchains.
The third category, blockchain connectors, includes trusted

elays, blockchain agnostic protocols, blockchain of blockchains
olutions, and blockchain migrators. Trusted relays are software
omponents, typically centralized, where escrows route cross-
lockchain transactions.

. Hermes

In this section, we introduce out interoperability middleware,
ermes.

.1. The concept of gateway

A gateway is a hardware device running software capable of
nteracting with blockchains (e.g., issuing transactions, reading
tate), and performing computation based on such interactions.
epending on the distributed ledger gateways are connected,
hey might need to be full nodes, i.e., they may need to im-
lement the whole functionality of a node of that blockchain
e.g., Ethereum). By being present in different DLTs, gateways
an perform cross-chain transactions (CC-Tx), i.e., transactions in-
luding both blockchains, including asset transfers [6]. A primary
ateway is the DLT system node acting as a gateway in a CC-
x. Primary gateways may be supported by backup gateways for
ault tolerance. Primary gateways can be a source gateway GS
r a recipient gateway GR, depending on the role they play in
CC-Tx. Source gateways initiate the gateway-to-gateway pro-

ocol, e.g., an asset transfer, data pushing/pulling. Gateways use



R. Belchior, A. Vasconcelos, M. Correia et al. Future Generation Computer Systems 129 (2022) 236–251

s
t
o

p
c
s
l
a
c
a
r
O
O
n
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machine-resolvable addresses (e.g., URIs/URLs) to communicate
with other gateways, obtaining information such as public-key
certificates and protocol-specific messages.

For gateways to be crash fault-tolerant, they keep track of each
operation they do in a log (of operations). The log is a sequence
of log entries, each entry representing a step of the gateway-
to-gateway protocol. Each message has a schema, defining the
parameters and the payload employed in each message flow. The
log data comprises the log information retained by a gateway
within a protocol using gateways. A gateway-to-gateway proto-
col specifies the set of messages and procedures between two
gateways for their correct functioning. The gateway-to-gateway
protocol considered in this paper is ODAP [2].

3.2. The architecture of hermes

Hermes is a middleware that enables DLT interoperability by
implementing part of the software component of gateways. ODAP
defines the set of messages (the protocol) for asset transfers
at the base layer, realizing technical interoperability. On top of
it, ODAP-2PC, a fault-tolerant gateway-to-gateway protocol, pro-
vides reliability in the presence of crashes. In case a cross-chain
transaction is aborted, ODAP-2PC attempts to issue a rollback on
the affected DLTs. ODAP-2PC also provides support for disputes
and accountability by providing logging capabilities via the log
storage API. Finally, business logic plugins can be implemented
(i.e., asset transfer), providing the core rules for a gateway to
operate (when to initiate or refuse a transfer). This layer im-
plements semantic interoperability. Clients can use Hermes to
upport standards that a specific gateway implementation needs
o comply with (e.g., Travel Rule [16]). Fig. 3 represents the layers
f Hermes.
Our architecture is flexible and modular, as its components are

luggable. By decoupling the protocol from the crash recovery
omponent, and the latter from the business logic plugins, our
ystem can be adapted to specific needs. For instance, in a trust-
ess environment, where gateways do not fully trust each other,
gateway might have a more robust fault recovery mechanism;
onversely, if gateways operate in a permissioned environment
nd completely trust each other, logging capabilities might be
educed to a local log. In this paper, we instantiate Hermes with
DAP and its crash fault-tolerant distributed recovery protocol,
DAP-2PC. The chosen business logic plugin allows promissory
ote exchanges, presented in detail in Section 5. We presented
239
Fig. 3. Hermes’s layers.

he architecture of a single Hermes-enabled gateway. In Fig. 4,
e present a network compressed of two organizations (A and
), each one with its gateway (Gateway A and Gateway B, re-
pectively). Gateway A is connected to DLT 1, while Gateway B
s connected to DLT 2, and a centralized system (e.g., invoice
ystem). This network connects data and assets from DLT 1 to
LT 2 (via Gateway A), DLT 2 to DLT 1 (via Gateway B).
Gateway A establishes a connection to Gateway B via ODAP,

xchanging protocol messages. Each gateway has an instance of
DAP-2PC, that guarantees the current state to be preserved.
tate is written to and read from the distributed log storage,
.e., DLT-based or cloud-based. This storage is accessible by both
ateways. Each gateway has its local log, where private informa-
ion on the gateways operations might be saved (e.g., for data
nalytics). Hermes redirects ODAP messages to business logic

plugins that, in its turn, issue transactions against distributed
ledgers (or centralized systems).

3.3. System model

We consider a partially synchronous distributed system (there
are unknown bounds on transmission delay and processing time)
composed of two types of participants: clients and gateways. Par-
ticipants have access to a globally synchronized clock (although
minor deviations are tolerated).

Clients are in charge of starting transactions and are connected
to gateways that are connected to blockchains. More specifically,
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Fig. 4. A Hermes-powered gateway network compressed of two gateways.
Within each gateway, the dark blue box represents a business logic plugin (B);
the local log is represented by L; the yellow box represents Hermes (H); the light
blue box represents ODAP (dotted border); the green box represents ODAP-2PC.

every gateway is a node from a DLT system authorized to act on
it (manage assets, identify participants) via, for example, smart
contracts. Gateways can communicate with other gateways and
can crash (i.e., becoming unresponsive). We assume that there
are no Byzantine or arbitrary faults. We assume blockchains are
secure, so they fail only by crashing. We consider a blockchain
ecure if the data stored is immutable, transparent to all their
articipants, traceable, and, generally, the consensus mechanism
annot be subverted by malicious parties.
Gateways store log data about the step of their protocol. This

nformation allows a gateway to construct a state, and recover, in
ase of a crashe. Gateways are honest-but-curious, i.e., follow the
protocol, but will attempt to learn all possible information from
legitimately received messages. Hermes provides the following
properties:

• P1 Atomicity: Transactions either commit on all underlying
ledgers or entirely fail.

• P2 Consistency: All gateways that decide on a CC-Tx reach
the same, either commit or abort. The state of the underlying
ledgers reflects that decision.

• P3 Durability: Once a transaction has been committed, it
must remain so regardless of any component crashes.

• P4 Isolation: When a transaction is issued, all the underlying
assets are locked.

• P5 Auditability: Any CC-Tx executed can be inspected by the
involved parties.

• P6 Termination: If a gateway proposes a transaction, it is
eventually committed or aborted.

To satisfy these properties, Hermes leverages ODAP and ODAP-
2PC.

3.4. Threat model

ODAP assumes a trusted, secure communication channel be-
tween gateways (i.e., messages cannot be spoofed or altered by
240
an adversary) using TLS 1.3 or higher, i.e., the receiver of the
communication will ascertain the authenticity validity of the
communication. Each gateway has a public and private key pair.
New TLS sessions [17] are created when a gateway crashes and
then recovers. Clients connect to gateways using a credential
scheme such as OAuth2.0 [18].

The distributed recovery protocol has assumptions regarding
log management. Log entries need integrity, durability, availabil-
ity, and confidentiality guarantees, as they are an attractive attack
point [19]. Every log entry contains a hash of its payload for
guaranteeing integrity. If extra guarantees are needed (e.g., non-
repudiation), a log entry might be signed by the gateway creating
it (e.g., with ECDSA [20]). Availability is guaranteed using the
log storage API, which connects a gateway to dependable storage
(local, external, or DLT-based). Each underlying storage provides
different guarantees. Access control can be enforced via the access
control profile that each log can have associated with, i.e., the pro-
file can be resolved, indicating which client can access the log in
which condition. Access control profiles can be implemented with
access control lists for simple authorization. The authentication of
the entities accessing the logs is done at the log storage API level
(e.g., username and password authentication in local storage vs.
blockchain-based access control in a DLT). We assume the log is
not tampered with or lost.

While we consider both gateways to be trusted, we consider
a probabilistic, polynomial-time adversary who can corrupt any
gateway to prevent the protocol from achieving liveness. The
adversary can do this by causing a gateway crash, interrupting an
asset transfer. However, we assume that gateways do not deviate
from the protocol. We assume the underlying ledgers where
gateways operate are safe (i.e., consensus cannot be subverted by
an adversary).

4. ODAP-2PC

In this section, we present Hermes’ main building block:
ODAP-2PC. We start by presenting ODAP, in which ODAP-2PC is
based.

4.1. ODAP

The ODAP protocol is a gateway-to-gateway unidirectional
asset transfer protocol that uses gateways as the systems con-
ducting the transfer [2]. An asset transfer is represented in the
form T : G1

a,x
→ G2, where a source gateway G1 transfers x asset

units from type a from a source ledger BS to a recipient ledger
BR, via a gateway G2.

The source gateway issues a transfer such that x asset units
will be unavailable at the source DLT and become available at the
target DLT. A recipient gateway is the target of an asset trans-
fer, i.e., follows instructions from the source gateway. Hermes
leveraged ODAP to provide as strong durability guarantees as to
the underlying durability guarantees of the chosen data store.
If the datastore is a blockchain, Hermes can achieve transaction
durability if transactions are immutable and permanently stored
in a secure decentralized ledger.

Durability

Hermes provides the durability guarantees that the infrastruc-
ture gateways are connected to.

The transfer process is started by a client (application) that
interacts with the source gateway. The source gateway then deals
with the complexity of translating an asset transfer request to
transactions targeting both the source and the target DLT systems.
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The gateway also knows other gateways, either directly or via
a decentralized gateway registry. ODAP has several operating
modes, but here we solely consider the relay mode. The relay
mode realizes client-initiated gateway to gateway asset transfers.

In ODAP, a client application interacts with its local gateway
source gateway GS) over a Type-1 API. The existence of this API
llows the client to provide instructions to GS (corresponding to
he source gateway) concerning the assets stored in the source
LT and the target DLT (via the recipient gateway, GR). The client
ay have a complex business logic code that triggers behavior
n the gateways. Hence, ODAP allows three flows: the transfer
nitiation flow, where the process is bootstrap, and several iden-
ification procedures take place; the lock-evidence flow, where
ateways exchange proofs regarding the status of the asset to
e transferred; and the commitment establishment flow, where
he gateways commit on the asset transfer. The schema of the
essages exchanged by the ODAP protocol is depicted in the

‘Simplified ODAP Message Format’’ figure.
Fig. 5 represents ODAP. When an end-user wants to perform

n asset transfer, gateways conduct such a process. In the transfer
nitiation flow (Phase 1), both gateways resolve identities, asset
nformation (via the asset profiles) and establish a secure channel.
his verification includes verifying the asset profile validity, the
ravel rule status, and the pair originator-beneficiary of the trans-
ction [2]. In the lock-evidence verification flow (Phase 2), claims
n the status of assets are exchanged, and their correspondent
roofs are persisted. The persistence of asset status proof allows
or non-repudiation and accountability, proving useful proofs in
esolving a dispute.

heorem 1 (Isolation). Let there be an instance of ODAP, with
source gateway GS and a recipient gateway GR, operating on

n asynchronous environment. Given a lock primitive LOCK that
revents assets from being used, if there is a timeout δt (applied to
teps 2.3 and 3.3 of ODAP), then ODAP provides transaction isolation.

roof (informal). In this context, transaction isolation implies that
certain asset is locked. At various points of the protocol, both GS
nd GR are waiting for messages before proceeding. In particular,
n steps 2.3 and 2.4, the logging procedure depends on the success
f the asset lock. A trigger δt , defining an interval before an
sset is used to assure that an asset is securely locked, even in
robabilistic-based consensus blockchains. After δt counterparty
R can produce a log entry with the asset locking proof. When
OCK is called, assets are locked, rendering any attempt of writing
ruitless. A similar process occurs in step 3.3. Thus, as assets
annot be changed up to step 3.7, ODAP guarantees transaction
solation. □

Isolation

ODAP-2PC provides transaction isolation by pre-locking
assets before the commitment of an asset transfer.

Finally, at the Commitment Establishment Flow (Phase 3),
ssets are escrowed. In practice, assets are locked on the source
edger and represent those created on the target ledger. The lock
f assets prevents double-spend attacks. ODAP aims at providing
ermination, a non-trivial problem when considering distributed
ransactions [21]. Thus, we consider three processes on ODAP,
1 = transfer initiation flow, p2 =lock-evidence flow, and p3 =

commitment establishment flow. Process p1 has 2 steps, p2 has 6
steps, and p3 has 6 steps. Thus, a normal end-to-end ODAP flow
would have 14 steps.
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Fig. 5. Simplified sequence diagram depicting ODAP. A transfer is issued by an
end-user to the gateway (G1), which then manages on-chain resources (L1), and
communicates with a counterparty gateway (G2). The asset transfer corresponds
to the creation of L2.

4.2. ODAP-2PC: Message and logging flow

ODAP-2PC aims to solve an important practical limitation of
ODAP. ODAP does not handle gateway crashes. If they crash, the
protocol may leave the DLTs in some inconsistent state. ODAP-
2PC allows the ODAP to continue operating when the faulty
gateway recovers, e.g., when the server where it runs reboots.

ODAP messages are exchanged between client applications
and gateway servers (DLT nodes). They consist of functional mes-
sages allowing protocol negotiation [2]. Messages are encoded
in JSON format, allowing for serialization, with protocol-specific
mandatory fields. Support for authentication and authorization
is provided, allowing for plaintext or encrypted payloads. This
servers enterprise needs. ODAP-2PC stores these messages in logs
to allow recovery.

We consider the set of logging nodes N = {GS, GR}, with log
entry requests with the format <phase, step, type-
operation operation, nodes>. Within processes, two types
of operations are considered: private operations and public op-
erations. Private operations involve only one gateway, requiring
two log entries, the intention of executing a command, and the
execution’s confirmation. This serves to handle crashes in systems
with only one node. Public operations are operations in which
a state is known by more than one node. Intuitively, a private
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Table 1
Logging flow regarding the validation operation, of ODAP’s phase 1.
Event From To Log ID Log Content Operation Type

GS triggers the validation operation GS GR l4 = lp1,1 <p1, 1, init-validate, (GS->GR)> validate init

GR executes the validation operation ✗ GR l5 = lp1,2 <p1, 2, exec-validate, (GR)> validate exec

GR completes the validation operation ✗ GR l6 = lp1,3 <p1, 3, done-validate, (GR)> validate done

GR informs GS GR GS l7 = lp1,4 <p1, 4, ack-validate, (GR->GS)> validate ack
A
o
f
g
s
s
o

l
i
r

operation is only known by the node executing it, whereas public
operations involve several nodes and are thus perceived by more
nodes than those executing it.

Simplified ODAP Message Format

1. Version: ODAP protocol Version (major, minor)
2. Resource URL: Location of Resource to be ac-

cessed.
3. Developer URN:

Assertion of developer/application identity.
4. Action/Response: GET/POST and arguments (or

Response Code)
5. Credential Profile: Specify type of auth (e.g. SAML,

OAuth, X.509)
6. Credential Block: Credential token, certificate,

string
7. Payload Profile: Asset Profile provenance and

capabilities
8. Application Profile: Vendor or Application specific

profile
9. Payload: Payload for POST, responses, and native

DLT txns
10. Sequence Number: Sequence Number.

The message flow generates a variable number of log entries,
epending on the situation: i) a private operation completes
uccessfully, generating three log entries (init-X, exec-X, done-X);
i) a private operation fails, generating three log entries (init-
, exec-X, fail-X); iii) a public operation completes successfully,
enerating at least four log entries (init-X, exec-X, done-X, ack-X),
nd (iv) a public operation fails, generating four log entries (init-
, exec-X, fail-X, ack-X). Given that a normal ODAP flow has 14
teps, one would expect at least 42 log entries.
Let us consider an example where there is an asset transfer

S
a,1
→ GR. We depict a message exchange with content m from

S to GR by GS
m
→ GR. The reply from GR to GS is represented by

GR
α(m)
→ GS , where α is a function that given an operation, step,

and input from a counterparty gateway, returns the response to
it. Fig. 6 illustrates part of the message flow involving the public
operation p1, the ODAP’s first phase. Note that one operation has
been performed before, corresponding to three log entries (init,
exec, done), and to a GS client issuing an asset transfer. Thus, the
first log entry from p1 has index 4. In the transfer initiation flow,
where GS initiates a transfer of one asset a to GR, the first step is
to resolve identities.

To fulfill step 1, GS takes two actions: 1) it expresses that GR
will be informed to initiate an asset transfer; and 2) it sends that
message to GR. These messages are sent to the Log Storage API,
that generates the appropriate log entries l4 = lp1,1

=< p1, 1,
init-validate, (GS → GR) >, l5 = lp1,2

=< p1,2, init, (GR) >,
l6 = lp1,3

=< p1, 3, done-init, (GR) >, and l7 = lp,4 =<
p1, 4, ack-validate, GR >. Table 1 summarizes the exchanged
messages and the log entries they generate. Note that these log
entries are simplified, for illustration purposes. ODAP logs have a
well-defined schema, and extra parameters, illustrated later in .
 n
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Fig. 6. Message flow regarding the validation operation, of ODAP’s phase 1.

We consider a log storage API that allows developers to be ab-
stracted from the storage details (e.g., relational vs. non-
relational, local vs. cloud vs. DLT-based) and handles access con-
trol if needed. In the next section, we detail the functioning of
the log storage API.

4.3. ODAP-2PC: Log storage API

The log storage API allows developers to abstract operations
on the log, focusing on the development of gateway-to-gateway
protocols. Our API uses the following primitives:

• initializeLog(γ ): returns a reference to an empty log L,
stored on the support γ . The support can be local γlocal, cloud
γcloud, or a blockchain γbc .

• getLogSupport(): returns the support γ .
• writeLogEntry(l,L): writes a log entry l in the log L,

stored on the support γ .
• getLogEntry(i): returns the log entry li.
• getLogLength: returns the length of the log, i.e., |L|.
• getLatestLogEntry: returns the log entry lj such that ∄li :

i > j
• getLog: returns L.

This API can be exposed as a REST API, allowing the log storage
PI to be hosted in an execution environment different from the
ne running the gateway implementation. We consider the log
ile to be a stack of log entries. Each time a log entry is added, it
oes to the top of the stack (has the highest index). Logs can be
aved either locally (e.g., γlocal = computer’s disk) and may also be
aved in an external service (e.g., γcloud = cloud storage service)
r even in a DLT (e.g., γbc = Ethereum).
Depending on the support, logs will have different privacy

evels. On support γlocal, logs are isolated, each gateway keeping
ts entries private. In case of a crash, the crashed gateway will
etrieve the most updated version of the log: if it is local, it

eeds to require it from other gateways (thus being susceptible
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to misbehavior from other gateways). This mode thus requires
substantial trust in other gateways. The DLT-based repository,
γbc , offers strong reliability concerning log-saving due to its im-
mutability, transparency, and traceability [19,22]. In particular,
this method offers accountability because persisted log entries
are non-repudiable, traceable, and cannot be changed; it offers
high availability because they are replicated across all nodes
participating in the network. The cloud support γcloud offers a
radeoff between γlocal and γbc , both in terms of cost and integrity
guarantees. As a cloud provider mediates this support, trust is put
on the provider instead of uniquely on the counterparty gateway.
However, it is likely to be more costly than the local support.

Format of log entries
The log entries’ format should account for three phases, in

case the gateway-to-gateway protocol is ODAP. In Section 4.2
we introduced a simplified version of a log entry for illustration
purposes. The mandatory fields for a log entry for ODAP-2PC are:

ODAP-2PC Log Schema – Mandatory Fields

1. Session ID: unique identifier (UUIDv2) repre-
senting an ODAP interaction (corresponding to a
particular flow)

2. Sequence Number: represents the ordering of
steps recorded on the log for a particular session

3. ODAP Phase ID: flow to which the logging refers
to. Can be Transfer Initiation flow, Lock-Evidence
flow, and Commitment Establishment flow.

4. Source Gateway ID: the public key of the gateway
initiating a transfer Source DLT ID: the ID of the
gateway initiating a transfer

5. Recipient Gateway ID: the public key of the gate-
way involved in a transfer Recipient DLT ID: the ID
of the gateway involved in a transfer

6. Timestamp: timestamp referring to when the log
entry was generated (UNIX format)

7. Payload: Message payload: contains subfields
Votes (optional), Msg, Message type. The field Votes
refers to the votes parties need to commit in the
2PC. Msg is the content of the log entry. Mes-
sage type refers to the different logging actions
(e.g., command, backup).

8. Payload Hash: hash of the current message
payload

Apart from mandatory log fields, the log schema for ODAP-
PC contains optional fields. The logging profile field contains the
rofile regarding the logging procedure. If not present, γ = γlocal
s assumed. The Source Gateway UID is the unique identifier (UID)
f the gateway initiating a transfer. The Recipient Gateway UID is
he UID of the gateway involved in a transfer. The Message Digest
s a gateway signature over the log entry. The Last Log Entry is the
ash of the previous log entry. Finally, the Access Control Profile is
he field specifying a profile regarding the confidentiality of the
og entries being stored; in particular, this field can be used to
arse access control policies to the supports managing logs. Next,
e introduce the ODAP-2PC, a distributed recovery mechanism

or gateways.

.4. ODAP-2PC: distributed recovery procedure

One of the key deployment requirements of gateways for asset
ransfers is a high degree of gateways availability. A distributed
ecovery procedure then increases the resiliency of a Hermes
ateway by tolerating faults. Next, we present an overview of
DAP-2PC.
243
Fig. 7. GS crashing before issuing init-validation to GR .

Overview
The protocol is crash fault-tolerant, so it does not tolerate

Byzantine faults (i.e., gateways that behave arbitrarily). Gateways
are trusted to operate the ODAP protocol as specified unless they
crash.

ODAP-2P support two alternative fault tolerance strategies:

1. self-healing mode: after a crash, a gateway eventually re-
covers, informs other parties of its recovery, and continues
executing the protocol;

2. primary-backup mode: after a crash, a gateway may never
recover, but that timeout can detect this failure [21]; if a
node is crashed indefinitely, a backup is spun off, using the
log storage API to retrieve the log’s most recent version.

In self-healing mode – the mode we detail in this paper –
when a gateway restarts after a crash, it reads the state from
the operation log and executes the protocol from that point on.
We assume that the gateway does not lose its long-term keys
(public–private key pair) and can reestablish all TLS connections.
In Primary-backup mode, we assume that after a period δt of the
failure of the primary gateway, a backup gateway detects that
failure unequivocally and takes the role of the primary. The failure
is detected using heartbeat messages and a conservative value
for δt . For that purpose, the backup gateway does essentially
the same as the gateway in self-healing mode: reads the log
and continues the process. In this mode, the log must be shared
between the primary and the backup gateways. If there is more
than one backup, a leader-election protocol must be executed to
decide which backup will take the primary role.

In both modes, logs are written before operations (write-
ahead) to provide atomicity and consistency to the protocol used
for asset exchange. The log data is considered as resources that
may be internal to the DLT system, accessible to the backup
gateway and possible other gateway nodes.

There are several situations when a crash may occur. Fig. 7
represents the crash of GS before it issues a validation operation
to GR (steps 1 and 2). Both gateways keep their log storage APIs,
with γlocal. For simplicity, we only represent one log storage API.
In the self-healing mode, the gateway eventually recovers (step
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Fig. 8. GS crashing after issuing the init command to GR .

), building a recovered message in the form <phase, step,
ECOVER, nodes> (step 4). The non-crashed gateway queries
he log entries that the crashed gateway needs (steps 5, 6). In
articular, GS obtains the necessary log entries at step 7 and com-
ares them to its current log. After that, GS attempts to reconcile
he changes with its current state (step 8). Upon processing, if
oth log versions match, the log is updated, and the process can
ontinue. If the logs differ, then GS calls the primitive updateLog,
pdating its log (step 9) and thus allowing the crashed gateway
o reconstruct the current state. In this particular example, step 9
ould not occur because operations exec-validate, done-validate,
nd ack-validate were not executed by GR. If the log storage API

is on the shared mode, no extra steps for synchronizations are
needed. After that, it confirms a successful recovery (steps 10, 11).
Finally, the protocol proceeds (step 12).

Fig. 8 represents a recovery scenario requiring further syn-
chronization. At the retrieval of the latest log entry, GS notices
its log is outdated. It updates it upon necessary validation and
then communicates its recovery to GR. The process then con-
tinues as normal. (for instance, corresponding to exec-validate,
done-validate, and ack-validate)

4.4.1. The ODAP-2PC protocol
In this section, we present the ODAP-2PC protocol itself. In

particular, this protocol is used at ODAP’s Phase 3, crucial for the
atomicity and the consistency of asset transfers. We consider two
parties: the coordinator GS , and the participant GR. The coordina-
tor manages the protocol execution while the participant follows
the coordinator’s instructions.

ODAP-2PC is a 2PC protocol able to detect and recover from
crashes, delivering the effort to execute an asset transfer starting
at ODAP’s phase 3: the commitment establishment flow. Crashes
at other phases of the ODAP are handled by the self-healing
mechanism, supported by the messaging and logging mechanism,
as depicted by Figs. 7 and 8. In phase 3, sensitive messages that
include the lock and unlocking of assets may not arrive due
to failures (e.g., communication failures, gateway crash due to
power outage). To detect crashes, we use a timeout δC . How-
ever, processes may wait for the crashed gateway to recover
244
for an unbounded timespan, wasting resources (e.g., locked as-
sets). To avoid this, we introduce an additional timeout δrollback.
When a gateway does not recover before this timeout, a timeout
action is triggered, corresponding to the rollback protocol. A pos-
ible rollback protocol cancels the current transactions by issuing
ransactions with the contrary effect, guaranteeing the consis-
ency of the DLT whose gateway is not crashed. Upon recovery,
he crashed gateway is informed of the rollback, performing a
ollback too. This process guarantees the consistency of both
nderlying DLTs.

Algorithm 1: ODAP-2PC Protocol
Input: Coordinator GS , Participant GR , Asset a, Gateway primitives

PRE_LOCK, LOCK, COMMIT,CREATE_ASSET, COMPLETE, ROLLBACK
Result: Asset a transferred from GS to GR

1 POGS = ⊥ ▷ rollback list for GS
2 POGR = ⊥ ▷ rollback list for GR
3 ▷ Pre-Voting Phase
4 preLock = GS .PRE_LOCK(a) ▷ step 2.3
5 POGS .append(preLock)
6 ▷ Voting Phase

7 GS
vote−req
−→ GR ▷ step 3.1

8 wait until GR
α(vote−req)

−→ GS ▷ step 3.2
9 ▷ Decision Phase

10 if GR
α(vote−req)

−→ GS = NO then
11 GS

abort()
−→ GR ▷ otherwise, GR

α(vote−req)
−→ GS = YES

12 GS .ROLLBACK(POGS ) ▷ undo GS .preLock(a)
13 end if
14 lock = GS .LOCK(a) ▷ step 3.3
15 POGS .append(lock)
16 commit = GS .COMMIT() ▷ step 3.4
17 if commit =⊥ then
18 GS

abort()
−→ GR

19 GS .rollback(POGS ) ▷ undo GS .LOCK(a)
20 end if

21 GS
commit
−→ GR

22 a′
= GR .CREATE_ASSET() ▷ step 3.5

23 POGR .append(a
′)

24 wait until GR
α(commit)
−→ GS ▷ step 3.6

25 if GR
α(commit)
−→ GS = COMMIT then

26 GS .COMPLETE() ▷ step 3.8
27 end if
28 else
29 GS

abort()
−→ GR ▷ otherwise, GR failed the commit

30 GS .ROLLBACK(POGS ) ▷ undo GS locks
31 GR .ROLLBACK(POGR ) ▷ undo GR .CREATE_ASSET()
32 end if
33 return ▷ asset transferred

Algorithm 1 depicts the ODAP-2PC. A coordinator GS and a
participant GR perform a CC-Tx T , that typically is an asset transfer
f x number of a assets, i.e., T : GS

a,x
→ GR. Any time a party

ABORTS, the protocol stops, and that transaction is considered
invalid (and thus the run of the protocol fails). We define a set
of gateway primitives Σ = {PRE_LOCK, UNLOCK, LOCK, COMMIT,
CREATE_ASSET, COMPLETE, ROLLBACK}, such that they realize
pre-locking an asset, locking an asset, unlocking an asset, com-
mitting to a CC-Tx, creating an asset, asserting for the end of the
protocol, and performing a rollback, respectively. The gateway
primitives are divided into two types: off-chain primitives and
on-chain primitives, represented by σ offchain and σ onchain, respec-
tively. Some off-chain primitives call their respective on-chain
primitive. The protocol receives a set of gateway primitives that
realize the commit, locking, rollback, and other operations. Lists
POGS and POGR track the operations to be rolled back in case of
failure for GSor GR, respectively.

First, in the session opening, the asset to be transferred is
agreed on. At the pre-voting phase, the source gateway initiates
the process, pre-locking an asset (executing the transaction right
to the point before its commitment, at step 2.3, line 4). The



R. Belchior, A. Vasconcelos, M. Correia et al. Future Generation Computer Systems 129 (2022) 236–251

G
l

i
G
t
T
d

n

P
l

p
i
s
p
a
d
c
t

recipient gateway confirms this pre-locking, issuing a VOTE-REQ
to its counterparty (line 7). The recipient gateway replies either
YES or ABORT (line 8), starting the decision phase. Note that the
eventual ABORT, at line 8, does not require a rollback because,
so far, no on-chain operations took place. At the beginning of the
decision phase, if GR replies NO, then the pre-lock is rolled back,
and the transaction aborted (lines 11 and 12). Otherwise, GS tries
to lock the asset to be transferred (line 14) and commit that action
(line 16). The recipient gateway completes the pending trans-
actions (line 22) and sends an acknowledgment message back
to the source gateway (line 24). Upon the second commit, the
source gateway completes the process, closing the session (line
26). However, if GS cannot commit (line 25 is not COMMIT), the
transaction is aborted, and the respective rollbacks are triggered.

If the participant GR does not reply on the blocking operations
(within t < δR, GS considers GR crashed, and starts the recovery
protocol). The recovery protocol may be trivial: in ODAP-2PC,
firstly, the gateway awaits the counterparty gateway to recover
(by assumption, it does). Upon recovery, the process depicted by
steps 4–11 from Fig. 7 takes place. Conversely, if GS does not
respond within t < δS , the same process occurs. It is worth
noting that the coordinator may issue the rollback at any point
t > δrollback, where δrollback > δR, i.e., it does not need to wait
indefinitely for the participant to recover. For both cases, if the
recovering awaiting period is greater than the rollback timeout
protocol, i.e., t > δrollback, the rollback protocol is triggered.

Consistency

ODAP-2PC provides transaction consistency by employ-
ing a self-healing strategy based on a write-ahead log: all
parties either COMMIT or ABORT the CC-Tx (i.e., the asset
transfer). The rollback protocol assures the consistency of
the underlying DLTs.

Theorem 2 (Termination). Let there be an instantiation of ODAP-2PC
in the self-healing mode, with a coordinator GS and a participant
GR, operating on an asynchronous environment. Given a coordinator
timeout δS and a participant timeout δR, ODAP-2PC assures that
ODAP terminates.

Proof (informal): At various points of the protocol, both GS and
R are waiting for messages before proceeding, in particular at
ines 3, 4, and 17. In line 3, GR waits for a VOTE-REQ message.
Since this gateway can decide to abort before it votes YES, it can
abort and stop the process if it has the timeout action triggered.
In line 4, GS is waiting for a YES or NO message. At this stage,
there is still no decision on how to proceed (GR still did not
decide to COMMIT). Thus, the coordinator can decide to abort
in case of timeout by sending ABORT to the other gateway and
stopping the process. In line 17, in case it voted YES, gateway GR
s waiting for a COMMIT or ABORT message. In case of a crash,
R gateway remains blocked until GS recovers. By assumption,
here is an upper bound in which gateways recover from crashes.
hus, gateways will be able to communicate and thereby reach a
ecision. □

Termination

ODAP-2PC does not block indefinitely, providing liveness
regarding its termination.

4.4.2. Rollback protocol
The process of rolling back blockchain-based transactions is

ot trivial. As most blockchains are immutable, rolling back
245
means issuing a transaction with the opposite effect of the first.
We call this a canceling a transaction. For example, canceling a
RE_LOCK(a) and LOCK would imply issuing a transaction un-
ocking a, whereas CREATE_ASSET would imply the destruction
of a created asset. The rollback protocol includes two parties: the
canceling gateway and the counterparty gateway. The canceling
gateway realizes the need to cancel one or more transactions,
initiate the rollback protocol, and propagate eventual corrective
measure commands to the counterparty gateway. There is a need
to involve a counterparty gateway to ensure the consistency of
the assets handled by the protocol.

The rollback process occurs as follows: 1) the canceling gate-
way undoes the transactions to be rolled back by issuing trans-
actions with the contrary effect; 2) the same gateway sends
an acknowledgment back to the counterparty gateway, and 3)
counterparty gateway undoes all its pending transactions, which
can lead back to step one, where the counterparty gateway serves
as the canceling gateway. This recursive protocol may generate a
cascade effect where several transactions from both blockchains
need to be canceled. Our rollback protocol is triggered at step
3.3 or 3.5. At step 2.3, if a lock is unsuccessful, there is still no
transaction to undo (an ABORT is sent). Steps 2.4 and 3.7 are
assumed to be successful, i.e., issuing a transaction that creates
a log entry succeeds. In particular, if the log entry cannot be
persisted in the blockchain support, alternative support is used
by the Log Storage API, and the respective party is warned.

Atomicity

The ODAP-2PC protocol provides transaction atomicity,

It is worth noting that the ODAP-2PC and its rollback protocol
depend on the implementation of a set of gateway primitives, as
well as a specific asset schema. In the next section, we briefly
present a use case leveraging gateway primitives.

5. Use case: Gateway-supported cross-jurisdiction promissory
notes

This section presents a use case implementing digital asset
transfers, benefiting from the gateway paradigm. The digital as-
sets to be exchanged are defined are standardized in as an asset
profile, which is ongoing work at the IETF [23]. An asset profile
is ‘‘the prospectus of a regulated asset that includes information
and resources describing the virtual asset’’. A virtual asset, on its
turn, is ‘‘a digital representation of value that can be digitally
traded’’ [23]. Asset profiles can be emitted by authorized parties,
having the capability to represent real-world assets (e.g., real
estate) legally.

5.1. Asset profile

The Asset Profile Definitions for DLT Interoperability draft
resents an unambiguous manner of representing a digital asset,
ndependently of its concrete implementation [23]. The repre-
entation of an asset via an asset profile allows for representing
hysical assets (called tokenization) that then can be exchanged
cross DLTs with Hermes. Hermes validates a given asset profile
efinition, allowing gateways to agree on the asset to be ex-
hanged, in the Transfer Initiation Flow. An asset profile contains
he following fields (from [23]):
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Asset Profile Schema

1. Issuer: The registered name or legal identifier of
the entity issuing this asset profile document.

2. Asset Code: The unique asset code under an
authoritative namespace assigned to the virtual
asset.

3. Asset Code Type: The code type to which the asset
code belongs under an authoritative namespace.

4. Issuance date: The issuance date of the Asset
Profile JSON document.

5. Expiration date: The expiration of the Asset Profile
JSON document in terms of months or years.

6. Verification Endpoint: The URL endpoint where
anyone can check the current validity status of the
Asset Profile JSON file.

7. Digital signature: The signature of the Issuer of the
Asset Profile.

8. Prospectus Link: The link to any officially pub-
lished prospectus, or non-applicable.

9. Key Information Link: The link to any Key
Information Document (KID), or non-applicable.

10. Keywords: The list of keywords to make the As-
set Profiles easily searchable. It can be blank or
non-applicable.

11. Transfer Restriction: Information about trans-
fer restrictions (e.g., prohibited jurisdictions), or
non-applicable.

12. Ledger Requirements: Information about the
specific ledger mechanical requirement, or
non-applicable.

We refer to this asset profile as Ap. For generic protocols
anipulating assets (e.g., transfer, creating), this asset profile
an provide the necessary attributes for trust establishment. For
nstance, gateways should verify their counterparty identity in
ase of an asset transfer. Moreover, the asset profile and asset
ode should be identifiable and retrievable, allowing different
ttributes to be parsed as inputs to the asset gateway primitives.

.2. Asset gateway primitives

Based on the proposed digital asset schema, we present
seudo-code for the gateway primitives used in ODAP-2PC. We
ecall the gateway primitives: off-chain primitives (COMMIT,
OLLBACK, and COMPLETE) and on-chain primitives (PRE-LOCK,
OCK, UNLOCK, and CREATE_ASSET). The sequencing of off-chain
perations, performed by gateways and on-chain operations,
llows the asset transfer. For instance, based on a specific asset
rofile Ap, gateways validate eventual restrictions (e.g., jurisdic-
ion restrictions) on a certain asset, at the validation phase, before
RE_LOCK an asset (in case the protocol comprises transferring an
sset).
To implement the primitives, we define an additional field on

p to represent a digital asset: state. Four possible states exist:
n asset is unlocked (can be used without constraints on that
edger), pre-locked (the asset will be transferred, and thus cannot
e used), locked (asset was transferred and cannot be used), and
urnt (asset was destroyed or permanently locked).
Algorithm 2 depicts the procedure to implement a PRE-LOCK,

OCK, and UNLOCK, if the level is pre-lock, lock, or unlock, re-
pectively. If the level is burnt, then an additional DLT-specific
peration needs to eliminate (burn) the asset. The PRE_LOCK
rimitive issues a LOCK, temporarily locking an asset on G ,
S p
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Algorithm 2: On-chain set state
Input: Asset a, Ledger connector c , lock level l
Result: Asset a locked at l

1 assetRepresentation = c.getStateById(a.assetCode) ▷ DLT-specific
2 assetRepresentation.state = l ▷ pre-lock, lock, unlocked, burnt
3 c .setState(assetRepresentation) ▷ DLT-specific

setting the state of the asset to pre-locked. After that, the gateway
waits for confirmation from the counterparty gateway of such an
operation. In case the protocol fails before COMMIT, a ROLLBACK
is issued by GS , triggering an UNLOCK transaction. The UNLOCK
sets the state of the pre-locked asset to unlocked, reverting the
effect of the PRE-LOCK.

If a COMMIT is successful, then two operations happen: 1)
in GS a LOCK is issued, setting the state of the asset to locked,
eaning it cannot be used; 2) GR issues a CREATE_ASSET, creating
representation of the original asset on the recipient ledger. If

he whole process is successful, according to ODAP-2PC, GS issues
COMPLETE. All operations are logged via the log storage API;
n additional on-chain primitive LOG is considered if the logging
akes place on-chain.

.3. Using hermes to exchange promissory notes

Promissory notes are freely transferable financial instruments
here issuers denote a promise to pay another party (payee) [24].
otes are globally standardized by several legal frameworks, pro-
iding a low-risk instrument to reclaim liquidity from debt. Notes
ontain information regarding the debt, such as the amount,
nterest rate, maturity date, and issuance place. Notes are use-
ul because they allow parties to liquidate debts and conduct
inancial transactions faster, overcoming market inefficiencies.
n practice, promissory notes can be both payment and credit
nstruments. A promissory note typically contains all the terms
bout the indebtedness, such as the principal amount, credit
ating, interest rate, expiry date, date of issuance, and issuer’s
ignature. Despite their benefits, paper promissory notes are hard
o track, require hand signatures and not-forgery proofs, ac-
ounting for cumbersome management. To address these chal-
enges, recent advances in promissory notes’ digitalization in-
lude FQX’s eNote [25]. Blockchain-supported digital promissory
otes (eNotes) worth about half a million dollars were used by
‘‘Swiss commodity trader to finance a transatlantic metal ship-
ent’’ [26]. eNotes are stored in a trusted ledger covered by the

egal framework, belonging to a specific jurisdiction. Consider the
ollowing supply chain scenario: a producer (P) produces a certain
mount of goods that sells to a wholesaler (W). W accepted the
oods, and now P issues an invoice of value V. The wholesaler
ould pay in, for example, 90 days. Because P does not want to
ait up to 90 days for its payment, it requests a promissory note

rom W, stating that V will be paid in 90 days. This way, P can sell
hat same promissory note to a third party. The promissory note
s abstract from any physical good being exchanged. Depending
n the issuer, collateral might not be needed, as the accountability
or liquidating the debt is tracked by the blockchain where it is
tored.
Blockchain-based promissory notes belonging to a particular

urisdiction are stored in a certified blockchain that exposes a
ateway. When a promissory note needs to change jurisdictions
e.g., a promissory note issued in the USA that needs to be
edeemed in Europe), the gateways belonging to the source and
arget blockchains perform an asset transfer the asset is a digital
romissory note. Alternatively, the gateway extends to several
urisdictions. Below is an example of an asset profile of a digital

romissory note. Such digital promissory notes can be trivially
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exchanged between blockchains using Hermes and the ODAP-
PC protocol, where gateways belonging to different jurisdictions
e.g., representing different blockchains regulated by different
ntities) perform asset transfers.

Promissory Note Example

1. Issuer: FQX AG
2. Asset Code: CH0008742519
3. Asset Code Type: ISIN
4. Keywords: Electronic Promissory Note; eNote;

Debt
5. Prospectus Link: N/A
6. Key Information Link: N/A
7. Transfer Restriction: shall not be transferred to

the U.S., Canada, Japan, United Kingdom, South
Africa. Shall not be transferred to non-qualified
investors anywhere.

8. Ledger Requirements: Hyperledger Fabric v2.x.
9. Original Asset Location: N/A

10. Previous Asset Location: N/A
11. Issuance date: 04.09.2020
12. Verification Endpoint:

https://fqx.ch/profile-validate
13. Signature Value: (signature blob)

6. Discussion

Hermes can include different gateway implementations, dif-
ferent gateway-to-gateway protocols, and different distributed
recovery mechanisms. Modularity and pluggability allow Hermes
o be flexible regarding different legal frameworks, supporting
ifferent privacy and performance requirements. In particular,
ermes can be instantiated in blockchains supporting smart con-
racts that implement functionality for locking and unlocking
ssets. The gateway paradigm allows integrating DLT-based sys-
ems to centralized legacy systems by leveraging existing legal
rameworks. For extra robustness, data integrity and counter-
arty performance can be attested using trusted hardware [27,
8]. Remote attestations are particularly important since prov-
bly exposing the internal state to external parties is a crucial
equirement for CC-Txs [29].

Gateways can also be leveraged for tasks other than asset
ransfers; they can perform the function of oracles, either central-
zed or decentralized [11], allowing to integrate blockchains with
xternal systems and data providers. An oracle’s general goal is
o retrieve data, validate and deliver it to a blockchain, or pull
nformation from a blockchain [30]. An oracle may provide extra
unctions, such as showing proof of original data, incentivizing
racle services (e.g., rewarding nodes providing information to
he oracle), and even privacy (encrypting data). As a gateway,
ermes can implement asset transfers through the ODAP protocol
r serve as an oracle.

.1. RQ1: Reliability

Our solutions implement a strong consistency model among
ateways, where there are no dirty writes or repeated reads
uring an atomic transaction (e.g., atomic asset exchange). This
s achieved by sacrificing liveness and using one of two mecha-
isms: on the primary backup mode, n-host resiliency is provided
y sequencing backups and using acknowledgment messages.
hese messages assure that the update has progressed at least
o the following backup beyond itself. However, primary backup
 d
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introduces a latency overhead, as the client application only
retrieves the output from the message update request after n
replicas have been updated. On the other hand, the self-healing
mechanism, allied to a resilient log storage API, provides means
for developers to save the ODAP state, even in the presence of
crashes. We should point out that this strong consistency model
solely applies to shared state among gateways and not shared
state among blockchains. Hermes delivers eventual consistency
among blockchains (either both operations eventually happen, or
none does), but no stronger guarantees (e.g., strict consistency,
strong consistency).

ODAP and ODAP-2PC assume a trade-off between reliability
and efficiency, according to the end-to-end principle [31]. The
more reliable a gateway is (in terms of accountability, termina-
tion, and ACID properties), the higher the overhead is in terms
of performance. The storage capability of gateways, abstracted
by the log storage API, determines gateways’ robustness, as logs
are used to dispute resolution and accountability. Shared, non-
repudiable, and immutable log entries provide better guarantees
than locally stored logs [19,22]. Thus, the log storage API serves
two purposes: 1) it provides a reliable means to store logs cre-
ated by all gateways involved in an asset transfer, and thus
ensures consistency, atomicity, and isolation; and 2) promotes
accountability across parties, reducing the risk of counterparty
fraud.

6.2. RQ2: Performance

As mentioned, a trade-off between reliability and performance
exists. Storing logs in local storage typically has lower latency but
delivers weaker integrity and availability guarantees than store
them on the cloud or in a ledger. Generally, the more resilient
the support γ is, the higher the latency (γbc > γcloud > γlocal).
or critical scenarios where strong accountability and traceability
re needed (e.g., financial institution gateways), blockchain-based
ogging storage may be appropriate. Conversely, for gateways
hat implement interoperability between blockchains belonging
o the same organization (i.e., a legal framework protects the legal
ntities involved), local storage might suffice.
ODAP-2PC exchanges messages to assure atomicity, leading

o blocking operations, where operations depend on the state of
he other gateway. In particular, γbc implies issuing a blockchain
ransaction, several orders of magnitude slower than writing on
isk or even writing on a cloud-based storage [32], especially
f one waits for confirmation, depending on the blockchain, it
ay require up to dozens of minutes. The self-healing mode is
ompatible with the three types of logs, but the primary backup
ode could require the log storage API on support external to the
ateway.

.3. RQ3: Decentralization

Gateway-to-gateway business transactions depend on the so-
ial and technological trust that stakeholders build. In particular,
s every operation is saved on a log, this log can be used for dis-
utes in case of misbehavior by any stakeholder. In particular, in
ase of dispute, the involved parties can inspect the logs and recur
o the legal frameworks [22] from the jurisdiction in which the
sset transfer occurs. Thus, for the legislated spaces and proper
og storage support, Hermes might be sufficiently decentralized.
hile this is acceptable for enterprise scenarios, as accountabil-

ty is guaranteed, there may be cases in which gateways are
ot trusted. Considering non-trusting gateways, Hermes might
ot be sufficiently decentralized. Besides picking the appropri-
te log storage support, one could choose several techniques to
ecentralize gateways or enhance the accountability level.
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A first option is to implement a gateway as a smart contract:
his does not allow a gateway to deviate from its configured
ehavior but has shortcomings, such as inflexibility, lack of scal-
bility, and operation costs. In particular, smart contracts often
ack the possibility of being integrated with external resources
nd systems; oracles may provide some extra flexibility [11].
mart contract-based gateways could also need to pay transaction
ees in public blockchains, such as gas on Ethereum [33], raising
dditional costs. Additional costs imply that adding gateways on
he same blockchain is not scalable.

Second, to decentralize Hermes, one could implement a
yzantine fault-tolerant version of a gateway, similarly to what
s planned on Cactus [15]. In this case, it is not a single gate-
ay conducting the message delivery process but a quorum of
ateways that belong to different stakeholders. In a permissioned
cenario, stakeholders could represent different departments,
ith the caveat that they should periodically publish proofs of
tate in an external repository [19]. If gateways are sufficiently
ecentralized, gateways do not need to be implemented as smart
ontracts. This allows better scalability than the smart contract
nd flexibility in integrating legacy systems and infrastructure
ith the gateways.
A third option is to secure computation leveraging trusted

ardware to enable remote attestation [27,28]. Remote attesta-
ion is a method allowing a device to authenticate its hardware
nd software to a centralized service, proving its integrity, and
hus its trustworthiness. Working as an additional security layer,
evice-level attestations would enable gateways to provide truth-
ul evidence of their internal state. Evidence would then promote
rust across gateways, diminishing the risk of collusion and mis-
ehavior. This solution would be essential for financial institution
ateways involving digital asset transfers with monetary value.

.4. RQ4: Security and privacy

Gateways should assure the integrity and non-repudiation of
og entries and ensure that the protocol terminates. If an adver-
ary performs a denial-of-service on either gateway, the asset
ransfer is denied, but ODAP-2PC assures eventual consistency of
he underlying DLTs. Accountability promoted by robust storage
an diminish the impact of these attacks. The connection between
ateways should always provide an authentication and authoriza-
ion scheme, e.g., based on OAuth and OIDC [34], and use secure
hannels based on TLS/HTTPS [17].
Gateways should be flexible enough to accommodate not only

ifferent legal frameworks but also different notions of privacy.
easoning about different privacy levels, one key question is:
hat should be the privacy granularity level regarding an issuer
nd beneficiary transaction of a digital asset? Some regulations
mply that both parties are identified, and such records are main-
ained for several years. However, for cryptocurrency exchanges
cross public blockchains, privacy might be of more significant
oncern. A second question follows: what are the privacy guaran-
ees of the gateway performing such transfers, mainly if logging
unctions are jointly performed, on blockchain-based support?
his question can be answered with privacy policies and cherry-
icking the information written in publicly available logs. Future
esearch on the security and privacy of gateways is needed before
hey are ready for production use.

Another privacy-related aspect is the encapsulation of inter-
al asset representation. Although gateways are working with
specific asset schema, each gateway needs to be aware of

he asset represented by the underlying DLT (or at least DLT
lient), i.e.; it needs to convert ODAP messages to blockchain-
pecific transactions. Thus, the gateway has the responsibility
f converting a standard representation on a DLT-specific one.
f desirable, gateways can hide representation details, providing
rivacy regarding asset management.
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7. Related work

Building dependable and trusted middleware for blockchain
interoperability requires the orchestration of several disciplines.
This section introduces related work on blockchain interoperabil-
ity solutions, crash recovery, and other contributions.

Interoperability solutions
Blockchain interoperability solutions are diverse and numer-

ous. However, few solutions can accommodate a seamless in-
tegration among public blockchains and non-public blockchains
(private blockchains, legacy systems). Thus, we focus on the com-
parison of Hermes with this class of solutions. Table 2 presents
existing related work with regard to several criteria (and sub-
criteria):

• Digital Asset Support: whether the solution can transfer
(1) Utility Tokens (non-fungible tokens, such as ERC-20 to-
kens [35]), or (2) Payment Tokens (fungible tokens, such as
Bitcoin, or Ether).

• Regulation: if the solution is implemented such that it is
compliant with (1) a Legal framework or (2) an existing or
ongoing Standard.

• Crash Recovery: the solution supports Crash Faults and/or
Byzantine Faults.

Hardjono et al. proposed a gateway-based architecture in-
spired by the architecture of the Internet [6], further expanded
by recent work [51]. The gateway-based paradigm bootstrap the
emergence of standardization efforts such as ODAP [2] at the
IETF [50]. Such protocols, in which Hermes is based, aim to
comply with the Travel Rule and FAFT regulations [49].

Ghaemi et al. [45] proposed a publisher-subscriber architec-
ture for blockchain interoperability, based on connector applica-
tions that publish on the connector smart contract held by the
broker blockchain. However, the connectors do not have crash
recovery mechanisms and thus are not suitable for a production
environment.

Hyperledger Cactus [15] is a trusted relay connecting DLTs,
whereby a consortium of Cactus Nodes endorses transactions.
Cactus aims to be a general-purpose interoperability solution
that uses two families of software components that, in its sum,
constitute a gateway: validators and connectors. Validators are
components that retrieve state from blockchains, while connec-
tors are active components that issue transactions. The consor-
tium can run arbitrary business logic, including logic for asset
transfers, making Cactus a suitable infrastructure to implement
gateways. However, Cactus Nodes have no crash recovery mech-
anism implemented and thus are not suitable for a production
environment. Weaver also aims to provide general-purpose in-
teroperability, using proofs of state of private blockchains [29],
called a blockchain view [52]. On top of that, they propose inter-
operability RFCs [48].

Quant Overledger is a blockchain interoperability enterprise
solution [36] compliant with the ongoing standardization effort
from ISO [47]. Overledger exposes functionalities from different
ledgers and legacy systems via a REST API. Overledger has crash
recovery mechanisms and can be deployed on different clouds.
However, this solution is not open source, and it is not clear if a
rollback protocol is provided.

Other solutions are equally promising, but lack crash recovery
capabilities, unlike Overledger, ODAP, and Hermes [38–44]. We
refer readers interested in interoperability to the survey in [11],
where each solution is analyzed in greater detail.

A short paper on some of the ideas presented in this paper
appeared before [12]. The present paper is three times larger
and presents in detail what the other barely sketches: Hermes,
ODAP-2PC, etc.
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Table 2
Classification of blockchain interoperability solutions connecting public and non-public blockchains. The green checkmark (✓)
indicates a subcriteria is fulfilled. A red cross (✗) indicates otherwise. The gray question mark (?) indicates that the criteria may or
not be fulfilled (we lack information to decide).

Digital asset support Regulation Crash recovery

Paper Year Payment tokens Utility tokens Legal Standardized Crash faults Byzantine faults

Quant Overledger [36] 2018 ✓ ✓ ✓a ✓b ✓ ✗

Bifrost [37] 2019 ✓ ✓ ✗ ✗ ✗ ✗

Abebe et al. [38] 2019 ✗ ✓ ✗ ✗ ✗ ✗

Wang et al. [39] 2020 ? ? ✗ ✗ ✗ ✗

Zhao et al. [40] 2020 ? ? ✗ ✗ ✗ ✗

Cactus [15] 2020 ✓ ✓ ✗ ✗ ✗ ✗

Weaver [29] 2020 ✓ ✓ ✗ ✓c ✗ ✗

Gewu et al. [41] 2020 ✗ ✓ ✗ ✗ ✗ ✗

SCIP [42] 2020 ✗ ✓ ✗ ✓d ✗ ✗

Nissl et al. [43] 2020 ✓ ✓ ✗ ✗ ✗ ✗

Fynn et al. [44] 2020 ✓ ✓ ✗ ✗ ✗ ✗

ODAP [2] 2021 ✓ ✓ ✓e ✓f ✓ ✗

Ghaemi et al. [45] 2021 ✗ ✓ ✗ ✗ ✗ ✗

This paper 2021 ✓ ✓ ✓e ✓f ✓ ✗

aInternational standards [46].
bISO/TC 307/SG 7 [47].
cWeaver Interop. RFCs [48].
dSCIP Protocol [42].
eTravel Rule, FAFT [49].

fIETF [50].
Crash recovery on cross-chain transactions
Two-phase commit was initially developed as an atomic com-

itment protocol that coordinates distributed transactions. Thus,
t could be seen as a consensus mechanism over the global state
ncompassing each distributed database. Generally, 2PC is not
sed for blockchain consensus [53], but rather for assuring the
eliability of atomic cross-chain transactions. Fynn et al. pre-
ented a Move operation that can migrate accounts and arbitrary
omputation across Ethereum virtual machine-based chains [44].
n atomic Move operation can be implemented with 2PC. Wang
t al. [39] presented a 2PC protocol for conducting CB-Tx. A
lockchain is elected as the coordinator in this scheme, managing
he process between an arbitrary number of blockchains. This
rotocol includes a heartbeat monitoring mechanism to guaran-
ee liveness.

However, it is unclear how ACID properties are assured, e.g.,
tomicity, as the authors do not provide a rollback protocol. Our
ork provides ACID properties via ODAP-2PC and the rollback
rotocol. Herlihy et al. discuss the need for developing models for
ross-chain transactions that evolve from traditional ACID prop-
rties when non-trusted actors are involved [54]. Gateways in
ermes are assumed to be trusted, and thus ACID properties seem
easonable to model transactions across these systems. However,
nd for future work, a decentralized ODAP system, where a set
f mutually non-trusting gateways represents each jurisdiction,
an benefit from the modeling mentioned above. A decentralized
DAP and its recovery mechanism, ODAP-3PC, could pave the
ay for resilience towards Byzantine faults and malicious actors.

tandardization efforts

Standardization processes typically take years from incep-
ion until publishing. While several standardization efforts are
ocusing on blockchain interoperability, none have been pub-
ished and widely adopted. While it is likely that there will be
everal competing standards, the most active ones seem to be
DAP (IETF [50]), ISO 307/SG 7 [47], and the IEEE Blockchain
nitiative [55].

Hermes is one of the few solutions (along with Quant
Overledger) that is being built considering the existing standard-
ization efforts.
249
Other contributions
Orthogonally, several contributions support the gateway

paradigm: Vo et al. propose decentralized blockchain registries
that can identify and address blockchain oracles [7]. Chen and
Hardjono proposed an IETF draft proposing a method for iden-
tification of computer systems that act as gateways and the
correct validation of the ownership of the gateway [56]. This
identification occurs via DNS, where a gateway owner registers
for an ‘‘Autonomous System number from ARIN, or other region
networking authorities (such as RIPE NCC for Europe and APNIC
for East and South Asia)’’ [56]. Self-sovereign based identity
promotes identity portability, by deferring the authentication
and authorization processes to the end-user [11,57,58]. Gateways
could then be identified by a decentralized identifier and issued
verifiable credentials by certified authorities that manage virtual
asset providers.

8. Conclusion

In this paper, we presented Hermes, a blockchain interoper-
ability middleware that enables gateway-to-gateway asset trans-
fers via the Open Asset Digital Protocol. Hermes can support as-
set transfer across jurisdictions, contributing towards regulation-
compliant, standardized, blockchain interoperability middleware.
We have shown that our solution is resilient to crashes by lever-
aging ODAP-2PC, a distributed recovery mechanism. This implies
that asset transfers are atomic, fair, and no double spending
can occur. A use case on the exchange of digital promissory
notes is presented, showing that Hermes is an appropriate trust
anchor for enterprise use cases requiring cross-blockchain asset
transfers. Future work will enable several gateways to be involved
in an atomic asset transfer (using ODAP-3PC), paving the way for
efficient multiparty atomic swaps.
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