Enabling Cross-Jurisdiction Digital Asset Transfer

Rafael Belchior!, André Vasconcelos!

, Miguel Correia', Thomas Hardjono

2

LINESC-ID, Instituto Superior Técnico, Universidade de Lisboa — Portugal
2MIT Connection Science & Engineering, Massachusetts Institute of Technology — USA

Abstract—Enabling blockchain-based digital asset exchanges
requires blockchain interoperability capabilities. Although some
solutions have been proposed in recent years, asset and crypto-
currency transfers across legal jurisdictions are still an unsolved
problem. To realize this vision, we propose HERMES, a fault-
tolerant middleware that connects blockchain networks, enabling
the transfer of data and value across legal jurisdictions. Hermes
is based on the Open Digital Asset Protocol (ODAP), an asset
transfer protocol. Hermes utilizes a novel mechanism called
ODAP-2PC and decentralized logging that can solve disputes
regarding asset exchange. We find Hermes to fill an existing
gap: the technical infrastructure that can constitute the basis
for legislating and regulating cross-chain transfers, enabling the
future of finance.

I. INTRODUCTION

There is today a resurgent interest in the potential use of
digital currencies and virtual assets as the foundation of the
next generation digital economy, and several trading nations
including are promoting new platforms for digital transactions
[19]. Significant attention is being placed on blockchain and
decentralized ledger technology (DLT) as a possible techno-
logical layer underlying these platforms.

Similar to the architecture of the Internet — which consists of
multiple independent autonomous systems with many routing
domains — the architecture of a global network of DLTs will
require interoperability across distinct DLT systems [13]. The
Internet solved the problem of inter-domain IP routing by
employing gateway routers which implement cross domain
protocols such as the Border Gateway Protocol (BGPv4).

We believe that similar to these Internet routing gateways,
the global network of DLTs will require gateways that permit
digital currencies and virtual assets to be transferred seam-
lessly between these systems. However, this entails designing
blockchain gateways that can operate reliably and can with-
stand attacks. The implication here is that a crash-recovery
strategy must be a core design factor of blockchain gateways,
where specific recovery protocols can be designed as part of
the digital asset transaction protocol between gateways.

In the current work we propose HERMES, a middleware
for blockchain interoperability that focuses on reliability. The
main component of Hermes is an extension of the ODAP pro-
tocol [15], called ODAP-2PC, a novel protocol that supports
ACID properties in cross chain transactions.

The contributions of this paper are two-fold: first, we present
the HERMES fault-tolerant middleware, instantiated with the
ODAP protocol and ODAP-2PC. Secondly, we provide a com-
prehensive discussion on Hermes as a solution for blockchain
interoperability, focusing on consistency, performance, and

decentralization. We also briefly explore a use case for cross-
jurisdiction asset transfers, illustrating how one can leverage
Hermes to achieve blockchain interoperability compliant with
legal and regulatory frameworks.

The rest of this paper is structured as follows: Section II
presents the background. After that, we introduce the gateway
concept and Hermes, in Section III. After, in Section IV,
we present ODAP-2PC. Section V, presents a use case that
benefits from Hermes. Section VI presents our discussion on
gateways, ODAP, and ODAP-2PC in the light of the presented
research questions. The related work follows, in Section VII.
Finally, we conclude the paper in Section VIIL

II. BACKGROUND

This section presents the background on fault tolerance
models and nomenclature both on logging and blockchain
interoperability.

Atomic Commit Protocols: An atomic commit protocol
(ACP) is a protocol that guarantees a set of operations being
applied as a single operation. An atomic transaction is indi-
visible and irreducible: either all operations occur, or none
does. ACPs consider two roles: a Coordinator that manages
the execution of the protocol, and Participants that manage the
resources that must be kept consistent. ACPs assume stable
storage with a write-ahead log (a history of operations are
persisted before actions are executed). Example of ACPs are
the two-phase commit protocol, 2PC, the three-phase commit
protocol, 3PC, and non-blocking atomic commit protocols [7].

2PC achieves atomicity even in case of temporary system
failure, accounting for a wide adoption both in the academia
and in the industry. It has two phases: the voting phase and the
commit phase. In the voting phase, the coordinator prepares
all participants to take place in a distributed transaction by
inspecting each participant’s local status. Each participant
executes eventual local transactions required to complete the
distributed transaction. If those are successful, participants
send a YES response to the coordinator, and the protocol
continues. Else, if the NO response is sent, it means that
the participant chose to abort; this happens when there are
problems at the local partition. Next, in the commit phase,
when the coordinator obtains YES from all participants, a
COMMIT message is sent to the participants that voted YES.
This message triggers the execution of local transactions that
implement the distributed transaction. Otherwise, the coordi-
nator sends an ABORT message, triggering a rollback on each
local partition.

Logging: A log L is a list of log entries {l1, [, ..., 1, } such
that entries have a total order, given by the time of its creation.
A log is considered shared when a set of nodes can read
and write from the log. On the other hand, a log is private
(or local) when only one node can read and write it. Logs
are associated to a process p running operations on a certain
node. To manipulate the log, we define a set of log primitives,
that translate log entry requests from a process p into log
entries. The log primitives are writeLogEntry (writes a log
entry), getLogLength (obtains the number of log entries), and
getLogEntry(i) (retrieves a log entry [;). A log entry request
typically comes from a single event in a given protocol.

A log storage API provides access to the primitives.
Log entry requests have the format <phase, step,
operation, nodes>, where the field operation corre-
sponds to an arbitrary command, and the field nodes to the
parties involved in the process p. We define four operations
types to provide context to the protocol being executed.
Operation type init- states the intention of a node to execute
a particular operation, and operation exec- expresses that the
node is executing the operation. The operation type done-
states when a node successfully executed a step of the protocol,
while ack- refers to when a node acknowledges a message
received from another. Conversely, we use the type fail- to
refer to when an agent fails to execute a specific step. The field
nodes contains a tuple with a node A issuing a command, or a
node A commanding a node B the execution of a command c,
if the form is A or A — B (c may be ommitted), respectively.

Blockchain Interoperability: A recent survey classifies
blockchain interoperability studies in three categories:
Cryptocurrency-directed interoperability approaches,
Blockchain Engines, and Blockchain Connectors [6].
Cryptocurrency-directed approaches are directed to enabling
the transfer of digital assets (e.g., cryptocurrencies)
across homogeneous and heterogeneous blockchains. The
cryptocurrency-directed approaches typically rely on protocols
leveraging public blockchains, as they assume that gateways
are not trusted. As a result, these approaches are difficult to
integrate with permissioned blockchains, that support with
arbitrary assets and smart contracts. The second category are
the blockchain engines, which enable creating application-
specific blockchain that can communicate with its other
instances. These solutions can benefit from implementing
gateways, providing each application-specific blockchain
(e.g., applications running on a parachain) self-sovereignty,
regarding communications with outter blockchains. The
third category, blockchain connectors include trusted relays,
blockchain agnostic protocols, blockchain of blockchains
solutions, and blockchain migrators. Trusted relays are
software components, typically centralized, where escrows
route cross-blockchain transactions.

III. THE ARCHITECTURE OF HERMES

This section introduces the gateway concept and Hermes.

Technical
Interoperability

Fig. 1: The architecture of Hermes

A. Blockchain Gateways

A gateway is a DLT system node based on an underlying
DLT-based system and functionally capable of performing CC-
Tx, including asset transfers [13]. A primary gateway is the
DLT system node acting as a gateway in a CC-Tx. Primary
gateways may be supported by backup gateways for fault
tolerance. For gateways to be crash fault-tolerant, they keep
track of each operation they do in a log (of operations). The
log is a sequence of log entries, each entry representing a step
of the gateway protocol. A gateway protocol specifies the set
of messages and procedures between two gateways for their
correct functioning. The gateway protocol considered in this
paper is ODAP [15], [5].

B. Blockchain Interoperability with Hermes

HERMES is a gateway system that enables DLT interop-
erability based on gateways. This system has four layers,
allowing for end-to-end communication. The gateway proto-
col layer implements any standards that a specific gateway
implementation needs to comply with (e.g., travel rule [12]).
ODAP, a gateway-based CCCP that realizes asset transfers,
allows realizing technical interoperability for asset transfers.
It is built on top of a distributed recovery protocol, providing
reliability in the presence of crashes. On top of the gateway
protocol stands a concrete implementation of a gateway.
Jointly with the gateway protocol, it provides support for
semantic interoperability [6], unlocking the value level. More
specifically, in the value level, the business logic is defined
for clients using gateways, allowing them to attribute value to
the assets exchanged with ODAP. The whole stack provides
atomicity, consistency, isolation, and durability of CC-Tx.
Figure 1 represents HERMES’ architecture.

Our architecture is flexible and modular, as its components
are pluggable. Modularity allows building a system that can
be adapted to specific needs. In this paper, we instantiate
HERMES with the ODAP-Gateway, the ODAP CCCP, and its
crash fault-tolerant distributed recovery protocol, ODAP-2PC.
The whole stack allows a business case, gateway-to-gateway
asset transfers, providing the basis for unidirectional asset
transfers, expressed in detail in Section V. The Hermes Client
allows to implement the business logic, realizing semantic
interoperability.

IV. HERMES

In this section, we present the main building blocks of
Hermes: ODAP and Hermes’ distributed recovery mechanism,
ODAP-2PC.

A. ODAP and Properties

The ODAP protocol is a gateway-to-gateway unidirectional
asset transfer protocol that uses gateways as the systems
conducting the transfer [15]. An asset transfer is represented in
the form T : G; %% G, where a source gateway (G transfers
x asset units from type a from a source ledger 5 to a recipient
ledger B, via a gateway Go.

The source gateway issues a transfer such that = asset units
will be unavailable at the source DLT and become available
at the target DLT. A recipient gateway is the target of an asset
transfer, i.e., follows instructions from the source gateway.
Hermes provides as strong durability guarantees as to the
underlying durability guarantees of the chosen data store. If
the datastore is a blockchain, Hermes can be considered to
achieve transaction durability, if transactions are immutable
and permanently stored in a secure decentralized ledger.

In ODAP, a client application interacts with its local gateway
(source gateway GS) over a Type-1 API. The existence of this
API allows the client to provide instructions to GS (corre-
sponding to the source gateway) concerning the assets stored in
the source DLT and the target DLT (via the recipient gateway,
GR). It is possible that the client has complex business logic
code that triggers behavior on the gateways. Hence, ODAP
allows three flows: the transfer initiation flow, where the
process is bootstrap, and several identification procedures take
place; the lock-evidence flow, where gateways exchange proofs
regarding the status of the asset to be transferred; and the
commitment establishment flow, where the gateways commit
on the asset transfer.

B. ODAP-2PC

One of the key deployment requirements of gateways for
asset transfers is a high degree of gateways availability. A
distributed recovery procedure then increases the resiliency of
a HERMES gateway by tolerating faults. Next, we present an
overview of ODAP-2PC.

The protocol is crash fault-tolerant, so the gateways are
trusted to operate the ODAP protocol as specified unless they
stop. We envisage ODAP-2PC to support two strategies to
increase the availability of gateways [5]: (1) self-healing mode:
after a crash, a gateway eventually recovers, informs other
parties of its recovery, and continues executing the protocol;
(2) primary-backup mode: after a crash, a gateway may never
recover, but that timeout can detect this failure; if a node is
crashed indefinitely, a backup is spun off, using the log storage
API to retrieve the log’s most recent version.

In both modes, logs are written before operations (write-
ahead) to provide atomicity and consistency to the protocol
used for asset exchange. The log-data is considered as re-
sources that may be internal to the DLT system, accessible to
the backup gateway and possible other gateway nodes.

There are several situations when a crash may occur. Figure
2 represents the crash of Gg before it issues a validation
operation to G (steps 1 and 2). Both gateways keep their log
storage APIs, with 7;,cq;. For simplicity, we only represent
one log storage APIL In the self-healing mode, the gateway

Source Gateway GS Recipient Gateway GR Log Storage API

Lk writeLogEntry <pl, 1, init-validate, (GS->GR)> _ |

| [2] & Crash &

i [3] recover

|
| [4] <pl. 1, RECOVER, GR>

[5] getLogEntry(i) i
—_— s e

|_[6] logEntries
r([] g

|71 send updated log ul

| [8] process log

i [9] updateLog(ul}

| [10] confirm recovery
T

:‘ [11] acknowledge recovery |

| [12]: <pl.2,init-validateNext, (GS->GR)>
T T

Source Gateway GS Recipient Gateway GR Log Storage API

Q Q Q

Fig. 2: Gg crashing before issuing init-validation to Gr

eventually recovers (step 3), building a recovered message
in the form <phase, step, RECOVER, nodes> (step
4). The non-crashed gateway queries the log entries that
the crashed gateway needs (steps 5, 6). In particular, Gg
obtains the necessary log entries at step 7 and compares them
to its current log. After that, Gg attempts to reconcile the
changes with its current state (step 8). Upon processing, if
both log versions match, then the log is updated, and the
process can continue. If the logs differ, then Gg calls the
primitive updateLog, updating its log (step 9) and thus
allowing the crashed gateway to reconstruct the current state.
In this particular example, step 9 would not occur because
operations exec-validate, done-validate, and ack-validate were
not executed by Gg. If the log storage API is on the shared
mode, no extra steps for synchronizations are needed. After
that, it confirms a successful recovery (steps 10, 11). Finally,
the protocol proceeds (step 12).

Figure 3 represents a recovery scenario requiring further
synchronization. At the retrieval of the latest log entry, Gg
notices its log is outdated. It updates it, upon necessary
validation, and then communicates its recovery to Ggr. The
process then continues as normal. (for instance, corresponding
to exec-validate, done-validate, and ack-validate)

ODAP-2PC is a 2PC protocol able to detect and recover
from crashes, delivering the effort to execute an asset transfer
starting at ODAP’s phase 3: the commitment establishment
flow. Crashes at other phases of the ODAP are handled by the
self-healing mechanism, supported by the messaging and log-
ging mechanism, as depicted by Figures 2 and 3. ODAP-2PC
considers two parties: the coordinator Gg, and the participant
Gr. The coordinator manages the protocol execution while the
participant follows the coordinator’s instructions. In phase 3,
these two parties exchange sensitive messages that include the
lock and unlocking of assets. Those messages may not arrive
due to failures (e.g., communication failures, gateway crash
due to power outage). To detect crashes, we use a timeout

Source Gateway G1 Recipient Gateway G2 Log Storage APl

i 1: 110 writeLogEntry <pl, 1, init-validate, (G5->GR)=>

| [2]: initiate ODAP's phase 1 |

1 [314 Crasha

P

| [4]: writeLogEntry <pl, 2, init, (GR)>

_[5]: execute init from p1

| [6]: writeLogEntry <p1l, 3, done-init, (GR)>

| [7]: writeLogEntry <pl, 4, ack-init, (GR->GS)> _ |

1 [8] <p1, 1, RECOVER, GR=>
-

. [9] getLogEntry(i)

. 3([10] logEntries
' [11] send updated logul !
e

i [12] process log

| [13] updateLog(ul)

1 [14] confirm recovery
:([15] acknowledge recovery !

| [16]: <pL.2.init-validateNext, (GS->GR)>

Source Gateway G1 Recipient Gateway G2 Log Storage API

Fig. 3: Gg crashing after issuing the init command to G

dc. However, processes may wait for the crashed gateway
to recover for an unbounded timespan, wasting resources
(e.g., locked assets). To avoid this, we introduce an additional
timeout d,o1pack- When a gateway does not recover before
this timeout, a timeout action is triggered, corresponding to
the rollback protocol. A possible rollback protocol cancels the
current transactions by issuing transactions with the contrary
effect, guaranteeing the consistency of the DLT whose gateway
is not crashed. Upon recovery, the crashed gateway is informed
of the rollback, performing a rollback too. This process
guarantees the consistency of both underlying DLTs.

Algorithm 1 depicts the ODAP-2PC. A coordinator Gg and
a participant Gr perform a CC-Tx T, that typically is an asset
transfer of x number of a assets, i.e., T : Gg oy GRr. Any time
a party ABORTS, the protocol stops, and that transaction is
considered invalid (and thus the run of the protocol fails). We
define a set of gateway primitives ¥ = {PRE_LOCK, UN-
LOCK, LOCK, COMMIT, CREATE_ASSET, COMPLETE,
ROLLBACK}, such that they realize pre-locking an asset,
locking an asset, unlocking an asset, committing to a CC-Tx,
creating an asset, asserting for the end of the protocol, and
performing a rollback, respectively. The gateway primitives
are divided into two types: off-chain primitives, and on-chain
primitives, represented by o°/fe¢ha@in and gonchain - regpec-
tively. Some off-chain primitives call their respective on-chain
primitive. The protocol receives a set of gateway primitives
that realize the commit, locking, rollback and other operations.
Lists POg, and POg,, track the operations to be rolledback
in case of failure for Ggor Gg, respectively.

V. USE CASE: GATEWAY-SUPPORTED
CROSS-JURISDICTION PROMISSORY NOTES

In this section, we present a use case implementing digital
asset transfers, benefiting from the gateway paradigm. The
digital assets to be exchanged are defined as an asset profile,

Algorithm 1: ODAP-2PC Protocol
Input: Coordinator Gg, Participant Gr, Asset a, Gateway
primitives PRE_LOCK, LOCK, COMMIT,CREATE_ASSET,
COMPLETE, ROLLBACK
Result: Asset a transferred from Gg to G

1 POgg, =1 > rollback list for Gg
2 POQR =1 > rollback list for G
3 > Pre-Voting Phase
4 preLock = G5.PRE_LOCK(a) > step 2.3
5 POg.append(preLock)
6 > Voting Phase
7 Gs UOte;;eq GRr > step 3.1
8 wait until G a(wgmq) Gs > step 3.2
9 > Decision Phase
w0 if G “5D G — NO then

b ? > —re
11 Gs aﬂ)() GRr > otherwise, G a(wifﬂn Gs = YES
12 Gs.ROLLBACK(POg) > undo Gg.preLock(a)
13 end if
14 lock = Gg.LOCK(a) > step 3.3
15 POgg .append(lock)
16 commit = Gg.COMMIT() > step 3.4

17 if commit =1 then

abor
18 gs 2or{0 9r

19 Gs.rollback(POgy)
20 end if

> undo Gg5.LOCK(a)

commit
2 Gs — Gr

2 a’ = Gr.CREATE_ASSET()
23 POg, .append(a’)

> step 3.5

24 wait until G a(eﬂm“) Gs > step 3.6
25 if G Gg = COMMIT then
% | Gs.COMPLETE()

27 end if

28 else

29 Gs GRr > otherwise, Gg failed the commit
30 Gs.ROLLBACK(POg.) > undo Gg locks
31 gR.ROLLBACK(POgR) > undo Gr.CREATE_ASSET()
32 end if
33 return

a(commit)
—

> step 3.8

abort()
—

> asset transferred

which is ongoing work at the IETF [21]. An asset profile is
“the prospectus of a regulated asset that includes information
and resources describing the virtual asset”. A virtual asset,
on its turn, is “a digital representation of value that can
be digitally traded” [21]. Asset profiles can be emitted by
authorized parties, having the capability to legally represent
real-world assets (e.g., real estate).

A. Asset Profile

The Asset Profile Definitions for DLT Interoperability draft
presents an unambiguous manner of representing a digital
asset, independently of its concrete implementation [21]. This
is notably for tokenization, as a physical asset might be
represented in a multitude of ways. Thus, it is important to
find a sufficiently generic schema that allows representing an
arbitrary digital asset, and thus enable asset transfers. Perhaps
most importantly, its definition assures that heterogenous DLTs
refer to the same asset within a transfer. An asset profile
contains the following fields (from [21]): issuer, asset code,
asset code type, issuance date, expiration date, verification
endpoint, digital signature, prospectus link, among others.
We refer to this asset profile as A,. For generic protocols

manipulating assets (e.g., transfer, creating), this asset profile
can provide the necessary attributes for trust establishment.
For instance, gateways should be able to verify its counter
party identity in case of an asset transfer. Moreover, the asset
profile and asset code should be identifiable and retrievable,
allowing different attributes to be parsed as inputs to the asset
gateway primitives.

B. Using Hermes to Exchange Promissory Notes

Promissory notes are freely transferable financial instru-
ments where issuers denote a promise to pay another party
(payee) [24]. Notes are globally standardized by several legal
frameworks, providing a low-risk instrument to reclaim liquid-
ity from debt. Notes contain information regarding the debt,
such as the amount, interest rate, maturity date, and issuance
place. Notes are useful because they allow parties to liquidate
the debts and conduct financial transactions faster, overcoming
market inefficiencies. In practice, promissory notes can be both
payment and credit instruments. A promissory note typically
contains all the terms about the indebtedness, such as the
principal amount, credit rating, interest rate, expiry date, date
of issuance, and issuer’s signature. Despite their benefits, paper
promissory notes are hard to track, require hand signatures and
not-forgery proofs, accounting for cumbersome management.
To address these challenges, recent advances in promissory
notes’ digitalization include FQX’s eNote [10]. Blockchain-
supported digital promissory notes (eNotes) worth about half
a million dollars were used by a “Swiss commodity trader to
finance a transatlantic metal shipment” [2]. eNotes are stored
in a trusted ledger covered by the legal framework, belonging
to a specific jurisdiction. Consider the following supply chain
scenario: a producer (P) produces a certain amount of goods
that sells to a wholesaler (W). W accepted the goods, and
now P issues an invoice of value V. The wholesaler could
pay in, for example, 90 days. Because P does not want to
wait up to 90 days for its payment, it requests a promissory
note from W, stating that V will be paid in 90 days. This
way, P can sell that same promissory note to a third party.
The promissory note is abstract from any physical good being
exchanged. Depending on the issuer, collateral might not be
needed, as the accountability for liquidating the debt is tracked
by the blockchain where it is stored.

Blockchain-based promissory notes belonging to a par-
ticular jurisdiction are stored in a certified blockchain that
exposes a gateway. When a promissory note needs to change
jurisdictions (e.g., a promissory note issued in the USA that
needs to be redeemed in Europe), the gateways belonging to
the source and target blockchains perform an asset transfer,
where the asset is a digital promissory note. Alternatively,
the gateway extends to several jurisdictions. Below is an
example of an asset profile of a digital promissory note. Such
digital promissory notes can be trivially exchanged between
blockchains using Hermes and the ODAP-2PC protocol, where
gateways belonging to different jurisdictions (e.g., representing
different blockchains regulated by different entities) perform
asset transfers.

VI. DISCUSSION

Hermes can be instantiated in blockchains supporting smart
contracts that implement functionality for locking and unlock-
ing assets. The gateway paradigm allows integrating DLT-
based systems to centralized legacy systems by leveraging
existing legal frameworks. For extra robustness, data integrity
and counterparty performance can be attested, using trusted
hardware [14], [8]. Remote attestations are particularly impor-
tant, since provably exposing internal state to external parties
is a crucial requirement for CC-Txs [4].

A tradeoff between reliability and performance exists. Stor-
ing logs in local storage typically has lower latency but deliver
weaker integrity and availability guarantees than store them
on the cloud or in a ledger. Generally, the more resilient the
logging is, the higher the latency. For critical scenarios where
strong accountability and traceability are needed (e.g., finan-
cial institution gateways), blockchain-based logging storage
may be appropriate. Conversely, for gateways that implement
interoperability between blockchains belonging to the same
organization (i.e., a legal framework protects the legal entities
involved), local storage might suffice.

Considering non-trusting gateways, Hermes might not be
sufficiently decentralized. Besides picking the appropriate log
storage support, one could choose from several techniques
to decentralize gateways or to enhance the accountability
level. A first option is to implement a gateway as a smart
contract: this does not allow a gateway to deviate from its
configured behavior but has shortcomings, such as inflexibility,
lack of scalability, and operation costs. In particular, smart
contracts often lack the possibility of being integrated with
external resources and systems; oracles may provide some
extra flexibility [6]. Smart contract-based gateways could also
need to pay transaction fees in public blockchains, such as gas
on Ethereum [25], raising additional costs. Additional costs
imply that adding gateways on the same blockchain is not
scalable. Second, to decentralize Hermes, one could implement
a Byzantine fault-tolerant version of a gateway, similarly to
what is planned on Cactus [17].

Regarding security, gateways should assure the integrity and
non-repudiation of log entries and ensure that the protocol
terminates. If an adversary performs a denial-of-service on
either gateway, the asset transfer is denied but ODAP-2PC
assures eventual consistency of the underlying DLTs. Account-
ability promoted by robust storage can diminish the impact
of these attacks. The connection between gateways should
always provide an authentication and authorization scheme,
e.g., based on OAuth and OIDC [1], and use secure channels
based on TLS/HTTPS [20].

VII. RELATED WORK

Hardjono et al. proposed a gateway-based architecture in-
spired by the architecture of the Internet [13], further expanded
by recent work [12]. Vo et al. propose decentralized blockchain
registries that can identify and address blockchain oracles
[22]. Such registries can be extended to support gateways.
Hyperledger Cactus [17] is a trusted relay connecting DLTs,

whereby a consortium of Cactus Nodes endorses transactions.
Cactus uses two families of software components that, on its
sum, constitute a gateway: validators and connectors. Valida-
tors are components that retrieve state from blockchains, while
connectors are active components that issue transactions. The
consortium can run arbitrary business logic, including logic
for asset transfers, making Cactus a suitable infrastructure
to implement gateways. Like Cactus, HERMES is a trusted
relay directed to enterprise use cases. Our system can be
decentralized using one of the approaches detailed in Section
VI. Other trusted relays can realize the concept of gateway
(e.g., [31], [4], [16], [9]). For the sake of space, we refer readers
interested in interoperability to [6].

Generally, 2PC is not used for blockchain consensus [18],
but rather for communication across blockchains. Fynn et al.
presented a Move operation that can migrate accounts and
arbitrary computation across Ethereum virtual machine based
chains [11]. An atomic Move operation can be implemented
with 2PC. Wang et al. [23] presented a 2PC protocol for
conducting CB-Tx. In this scheme, a blockchain is elected as
the coordinator, managing the process between an arbitrary
number of blockchains. This protocol includes a heartbeat
monitoring mechanism to guarantee liveness. However, it is
not clear how are ACID properties assured, e.g., atomicity,
as the authors do not provide a rollback protocol. Our work
provides ACID properties via ODAP-2PC and the rollback
protocol.

VIII. CONCLUSION

This paper introduced HERMES, a middleware that enables
blockchain interoperability across DLT-systems that can oper-
ate under different legal frameworks. HERMES is instantiated
with ODAP, an asset transfer protocol between two gateway
devices. Hermes supports ACID properties and can assure
accountability by keeping an off-chain or on-chain shared
log of operations. We propose and discuss ODAP-2PC, a
distributed recovery mechanism, guaranteeing asset transfers
between blockchains to be atomic and secure. By studying
Hermes’ reliability, performance, decentralization, security,
and privacy, we explore the potential of gateways to respond to
the current interoperability challenge. By presenting the digital
promissory note use case, we show that Hermes is an appro-
priate trust anchor for enterprise use cases requiring cross-
blockchain asset transfers. Future work will enable several
gateways to be involved in an asset transfer (ODAP-3PC),
paving the way for efficient multiparty atomic swaps.

ACKNOWLEDGMENTS

We warmly thank Benedikt Schuppli for discussions on digital
promissory notes and our colleagues in the IETF ODAP work-
ing group for discussions on ODAP-2PC. This work was partially
supported by national funds through Fundacdo para a Ciéncia e a
Tecnologia (FCT) with reference UIDB/50021/2020 (INESC-ID) and
2020.06837.BD, and by the European Commission program H2020
under grant agreement 822404 (QualiChain).

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]
(11]
[12]

[13]

[14]

[15]

[16]

(171

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Final: OpenID Connect Core 1.0 incorporating errata set 1.
Transatlantic Shipment of Metals Financed via FQX eNote — Treasury
Management International.

E. Abebe, D. Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy,
P. Novotny, V. Pandit, V. Ramakrishna, and C. Vecchiola. Enabling
Enterprise Blockchain Interoperability with Trusted Data Transfer. In
Proceedings of the 20th International Middleware Conference Industrial
Track, pages 29-35. Association for Computing Machinery, 2019.

E. Abebe, D. Karunamoorthy, J. Yu, Y. Hu, V. Pandit, A. Irvin, and
V. Ramakrishna. Verifiable Observation of Permissioned Ledgers. arXiv
2012.07339v2, 2021.

R. Belchior, M. Correia, and T. Hardjono. DLT Gateway Crash Recovery
Mechanism draft 02. Internet-Draft draft-belchior-gateway-recovery-02,
Internet Engineering Task Force, 2021.

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A Survey
on Blockchain Interoperability: Past, Present, and Future Trends. ACM
Computing Surveys, may 2021.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. Addison-Wesley, 1987.

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen. Principles of remote
attestation. International Journal of Information Security, 10(2):63-81,
jun 2011.

G. Falazi, U. Breitenbiicher, F. Daniel, A. Lamparelli, F. Leymann, and
V. Yussupov. Smart Contract Invocation Protocol (SCIP): A Protocol
for the Uniform Integration of Heterogeneous Blockchain Smart Con-
tracts. In International Conference on Advanced Information Systems
Engineering, volume 12127 LNCS, pages 134-149, 2020.

FQX. eNI™ Infrastructure - fqx.ch - Electronic Negotiable Instruments
- FQX, 2020.

E. Fynn, F. Pedone, and B. Alysson. Smart Contracts on the Move. In
Dependable Systems and Networks, 2020.

T. Hardjono. Blockchain Gateways, Bridges and Delegated Hash-Locks.
arXiv 2102.03933, 2021.

T. Hardjono, A. Lipton, and A. Pentland. Towards an Interoperability
Architecture Blockchain Autonomous Systems. IEEE Transactions on
Engineering Management, 67(4):1298-1309, June 2019.

T. Hardjono and N. Smith. Towards an Attestation Architecture for
Blockchain Networks (to appear). World Wide Web Journal — Special
Issue on Emerging Blockchain Applications and Technology, 2021.

M. Hargreaves, T. Hardjono, and R. Belchior. Open Digital Asset
Protocol draft 02. Internet-Draft draft-hargreaves-odap-02, Internet
Engineering Task Force, 2021.

L. Kan, Y. Wei, A. Hafiz Muhammad, W. Siyuan, G. Linchao, and
H. Kai. A Multiple Blockchains Architecture on Inter-Blockchain Com-
munication. Proceedings - 2018 IEEE 18th International Conference
on Software Quality, Reliability, and Security Companion, QRS-C 2018,
pages 139-145, 2018.

H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogy-
vari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior. Hyperledger
Cactus Whitepaper, 2020.

J. Nijsse and A. Litchfield. A Taxonomy of Blockchain Consensus
Methods. Cryptography, 4(4):32, 2020.

A. Pentland, A. Lipton, and T. Hardjono. Time for a new, digital Bretton
Woods. Barron’s, June 2021.

E. Rescorla. RFC 8446 - The Transport Layer Security (TLS) Protocol
Version 1.3, 2014.

A. Sardon, T. Hardjono, and Benedikt Schuppli. Asset Profile Definitions
for DLT Interoperability (draft-sardon-blockchain-interop-asset-profile-
00). Technical report, 2021.

H. Tam Vo, Z. Wang, D. Karunamoorthy, J. Wagner, E. Abebe, and
M. Mohania. Internet of Blockchains: Techniques and Challenges
Ahead. In 2018 IEEE iThings/GreenCom/CPSCom/SmartData, pages
1574-1581, 2018.

X. Wang, O. T. Tawose, F. Yan, and D. Zhao. Distributed Nonblocking
Commit Protocols for Many-Party Cross-Blockchain Transactions, jan
2020.

J. S. Waterman. The Promissory Note as a Substitute for Money.
Minnesota Law Review, 14:313, 1929.

G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Byzantium version 7e819ec. Technical report, 2019.

