HERMES: Fault-Tolerant Middleware for Blockchain
Interoperability

Rafael Belchior, André Vasconcelos, Miguel Correia, Thomas Hardjono

Abstract—Blockchain interoperability is reducing the risk of
investing in blockchain by avoiding vendor lock-in, leveraging inter-
operation, and providing migration capabilities. However, unlock-
ing the internet of blockchains requires enterprise interoperability
mechanisms that allow service providers to comply with different
regulations, e.g., data privacy regulations. Each blockchain can be
reached via a gateway, allowing to interconnect value, to provide
different services, and to enable self-sovereignty. To realize this
vision, we propose HERMES, a fault-tolerant middleware that
connects blockchain networks and is based on the Open Digital
Asset Protocol (ODAP). Hermes is crash fault-tolerant by allying
a new protocol, ODAP-2PC, with a log storage API that can
leverage blockchain to secure logs, providing them transparency,
auditability, availability, and non-repudiation. We introduce a use
case benefiting from HERMES, digital cross-jurisdiction promissory
notes. We show that cross-chain transactions can be achieved
securely with HERMES, given that gateways are complying with
legal frameworks.

I. INTRODUCTION

The interoperability of blockchains is key to the area [9].
Several works point out that a blockchain, or more generically
a Distribute Ledger Technology (DLT) system — we use the two
terms interchangeably —, can deliver more value when connected
to multiple business ecosystems and data providers [31], creating
an interconnected network of value, similarly to the rise of the
Internet [20], [38].

Recent efforts on the blockchain space are already enabling
the connection of heterogeneous (i.e., different) blockchains
(e.g., [4], [39], [27]), enabling the internet of blockchains, and
thus a multiple-blockchain approach for developing applications
(such as [25], [33], as surveyed by [9]). For instance, Hyper-
ledger Cactus allows defining business logic plugins that imple-
ment use cases connecting both public and private blockchains
[27], capable of complying with legal frameworks and regu-
lations. Although several dozens of solutions and architecture
proposals exist for interoperating blockchains, practical solu-
tions are scarce and limited [9]. In particular, current solutions
are often lacking standardization and provide interoperation
capabilities for limited use cases (e.g., asset transfers [13], [35],
[10D.

The notion of blockchain gateway (gateway for short) en-
visions each blockchain as an autonomous system, provid-
ing the emerging internet of blockchains survivability, cost-
effectiveness, and capabilities for accomodating different ser-
vices and networks [20]. Autonomous systems are able to
comply with different jurisdictions, and also hierarchically
aggregate information, providing routing capabilities for cross-
blockchain transactions (CB-Tx) with an arbitrary payload.
Examples of cross-blockchain transactions are asset transfers
and smart contract calls [25]. Gateways are autonomous systems

that deliver messages to other gateways, following the end-to-
end principle, where the application layer delegates message
delivery reliability, data encryption, and key management to a
gateway (transport layer) [19]. The client application handles
the delivered item (value layer), allowing for great flexibility.
In other words, gateways provide the infrastructure for appli-
cations issuing CB-Tx, by connecting to DLT systems (e.g.,
blockchains). Within the Internet Engineering Task Force (IETF)
there is currently ongoing work on an asset transfer protocol
that operates between two gateway devices, the Open Digital
Asset Protocol (ODAP) [22], [7]. ODAP is the first cross-chain
communication protocol handling multiple digital asset cross-
border transactions by leveraging asset profiles (the schema of
an asset) and the notion of gateways. The process of transferring
an asset among blockchains is equivalent to an atomic swap, that
locks an asset in a blockchain and creates its representation on
another.

We present HERMES, a middleware for blockchain interop-
erability that focuses on reliability. The main component of
Hermes is an extension of the ODAP protocol that we also
introduce in this paper. We denominate this protocol ODAP-
2PC as it is inspired in the two-phase commit protocol (2PC)
[11]. Hermes also leverages a log storage API that comes with
different storage options: local, cloud, or blockchain-based. By
modeling and developing this system, we expect to address three
research questions: RQ1 What is the reliability of a cross-chain
transaction issued by a gateway, i.e., how can one be sure that
a gateway can effectively deliver transactions? RQ2 What is the
trade-off between resiliency and performance of gateways? RQ3
How decentralized is HERMES, and how can it be accountable
for the transactions it manages? and RQ4 What to expect in
terms of security and privacy of gateway-based interoperability
solutions?

Our work focuses on the reliability of gateways, and thus on
ODAP-2PC, as crashes can pose severe threats to the correct
operation of gateways: what happens if a gateway initiates
a CB-Tx and then crashes? Systems that perform sensitive
operations such as virtual asset transfers among ledgers have
to possess a degree of resiliency and fault tolerance in the face
of possible crashes [30]. Since gateways handle information
transfer between parties, it is desirable that either all operations
are executed successfully or none is executed. Atomic commit-
ment protocols such as 2PC attempt at providing transaction
atomicity, where multiple parties consistently carry out a single
logical action, typically distributed. Other properties desirable
for the reliability of distributed transactions are consistency,
isolation and durability. These ACID properties are the basis
for transactional systems for more than twenty years [26], and
are discussed throughout this paper. A key component of ODAP-

2PC’s crash recovery guarantees that the source and target DLTs
are modified consistently, i.e., that assets taken from the source
DLT are persisted into the recipient DLT, and no double spend
can occur. To address this challenge, ODAP-2PC maintains logs
that enable either the gateways to resume partially completed
transfers, allowing for a gateway to recover in case of a crash
[11].

The contributions of this paper are three-fold: first, the
blockchain gateway concept is explained, from a theoretical and
practical perspective. Second, we present the HERMES fault-
tolerant middleware, instantiated with the ODAP protocol and
ODAP-2PC. Lastly, we provide a comprehensive discussion on
Hermes as a solution for blockchain interoperability, focusing
on consistency, performance, and decentralization. We also
briefly explore a use case for cross-jurisdiction asset transfers,
illustrating how one can leverage Hermes to achieve blockchain
interoperability compliant with legal and regulatory frameworks.

The rest of this paper is structured as follows: Section II
presents the background. After that, we introduce the gateway
concept and Hermes, in Section III. After, in Section IV, we
present ODAP, including the message and logging procedure, the
log storage API, and the distributed recovery protocol (Sections
IV-B, IV-C, and IV-D, respectively). Section V, presents a
use case that benefits from Hermes. Section VI presents our
discussion on gateways, ODAP, and ODAP-2PC in the light of
the presented research questions. The related work follows, in
Section VII. Finally, we conclude the paper in Section VIIIL.

II. BACKGROUND

This section presents the background on fault tolerance mod-
els and nomenclature both on logging and blockchain interop-
erability.

Fault Tolerance: A fault is an event that alters the expected
behavior of a system. Faults can imply the transition from a cor-
rect state of the system to an incorrect state, called errors. Errors
can provoke failures if the system deviates from its specification,
possibly causing loss of information or compromising business
logic. Nodes can experience failures where for various reasons
(e.g., power outage, network partitions, faulty components). We
consider four failure types: message loss, communication link
failure, site failure, and network partition. Albeit common, fail-
ures can be detected by different mechanisms, such as timeouts,
defined as the upper bound §; that a message is expected [11].

Fault Recovery: Typically, crash fault-tolerant (CFT) services
can tolerate % nodes crashing, with n being the number of
nodes. As long as there is a majority of nodes with the latest
state, failures can be tolerated. The primary-backup model
defines a set of n hosts (or nodes) that, as a group, assures
service resiliency, thus improving availability. In this model, an
application client sends messages to a primary node P. The
primary nodes redirects the message updates to a set of replicas
(backups) B = {Bj, ..., B,}, when it receives a message. The
backup server k propagates the new incoming message to the
backup server k+1, k < n,k € R. Node P is then notified an
update when n-host resiliency is met, i.e., the message was at
least replicated in n nodes. Should such acknowledgment fail
to be retrieved by P, a message update request is re-sent. If
P crashes, then a new leader P,..,, € B is elected. If a backup
node receives a request from the application client, it redirects it

ping

G‘G

ack

(a) Both nodes operational. P sends ping to B and gets ACK response.

awaits ping

(b) Node P crashes, leaving B awaiting for a ping.

recovers awaits ping

(c) Node P recovers, re-establishing the connection to B.

Fig. 1: Self-healing mode with two nodes

to P, only accepting it when the latter sends the update request.
When an update is received, P sends the message update to its
right-hand neighbor, sending back an acknowledgment.

Another recovery mechanism is self-healing [11]. In self-
healing, when nodes crash, they are assumed to recover even-
tually. While this mode is cheaper than primary-backup, as
there are fewer nodes, less exchanged messages and lower
storage requirements, it comes at the expense of availability. In
particular, the protocol may block until nodes recover. Figure 1
depicts a simplified self healing protocol for two nodes. Node
P sends a ping to node B, that responds with an ACK. In case
of a crash, node B awaits for a ping.

Atomic Commit Protocols: An atomic commit protocol (ACP)
is a protocol that guarantees a set of operations being applied
as a single operation. An atomic transaction is indivisible and
irreducible: either all operations occur, or none does. ACPs
consider two roles: a Coordinator that manages the execution
of the protocol, and Participants that manage the resources that
must be kept consistent. ACPs assume stable storage with a
write-ahead log (a history of operations are persisted before
actions are executed). Example of ACPs are the two-phase
commit protocol, 2PC, the three-phase commit protocol, 3PC,
and non-blocking atomic commit protocols [11].

2PC achieves atomicity even in case of temporary system
failure, accounting for a wide adoption both in the academia
and in the industry. It has two phases: the voting phase and
the commit phase. In the voting phase, the coordinator pre-
pares all participants to take place in a distributed transaction
by inspecting each participant’s local status. Each participant
executes eventual local transactions required to complete the
distributed transaction. If those are successful, participants send
a YES response to the coordinator, and the protocol continues.
Else, if the NO response is sent, it means that the participant
chose to abort; this happens when there are problems at the
local partition. Next, in the commit phase, when the coordinator
obtains YES from all participants, a COMMIT message is sent
to the participants that voted YES. This message triggers the

execution of local transactions that implement the distributed
transaction. Otherwise, the coordinator sends an ABORT mes-
sage, triggering a rollback on each local partition.

Logging: A log L is a list of log entries {l1,l2,...,1,,} such
that entries have a total order, given by the time of its creation.
A log is considered shared when a set of nodes can read and
write from the log. On the other hand, a log is private (or
local) when only one node can read and write it. Logs are
associated to a process p running operations on a certain node.
We denote the n'" step of process p as (n,p). We denote the
it" log entry, as I;, and the log entry referring to process p
and step k as [P*. Both i and k are monotonically increasing
positive integers. To manipulate the log, we define a set of log
primitives, that translate log entry requests from a process p
into log entries. The log primitives are writeLogEntry (writes
a log entry), getLogLength (obtains the number of log entries),
and getLogEntry(i) (retrieves a log entry [;). A log entry request
typically comes from a single event in a given protocol.

A log storage API provides access to the primitives. Log entry
requests have the format <phase, step, operation,
nodes>, where the field operation corresponds to an arbitrary
command, and the field nodes to the parties involved in the pro-
tocol p. We define four operations types to provide context to the
protocol being executed. Operation type iniz- states the intention
of a node to execute a particular operation, and operation exec-
expresses that the node is executing the operation. The operation
type done- states when a node successfully executed a step of
the protocol, while ack- refers to when a node acknowledges a
message received from another. Conversely, we use the type fail-
to refer to when an agent fails to execute a specific step. The
field nodes contains a tuple with a node A issuing a command,
or a node A commanding a node B the execution of a command
¢, if the form is A or A — B (¢ may be ommitted), respectively.

Figure 2 illustrates the logging procedure of a process A that
has three steps and includes two nodes using a log storage APIL.
While typically each log has its own log (and log storage API),
we only represent one for simplicity. Note that nodes can also
have a common log. Log entry [; = ["":! corresponds to the
node’s first message to the log storage API, which on its turn
persists it on a log, using the writeLogEntry primitive. The
log storage API writes the message that is received. For instance,
in step 2 the log storage API executes writeLogEntry<Process
A, 1, init-node, Node>. Log entry [; is created in step (2),
coming from the command issued at step 1. Conversely, writing
ly = 12 (steps 4 and)) corresponds to the command that
the node issues towards node 2 (step 6), initAllINodes, which
causes node 2 to issue an init operation. Log entry ["3
corresponds to the execution of init by Node 2 (step 9). At
step 12, getLogLength returns 3.

Blockchain Interoperability: A recent survey classifies
blockchain interoperability studies in three categories: Public
Connectors, Blockchain of Blockchains, and Hybrid Connec-
tors [9]. The survey uses the terms Cross-Chain Transaction
(CC-Tx) and Cross-Blockchain Transaction (CB-Tx) respectively
for the cases where the blockchains are homogeneous (same
technology) and heterogeneous (the opposite). Here we do not
distinguish the use and adopt the acronym CC-Tx to designate
such transactions. These transactions are implemented using
Cross-Chain Communication Protocols (CCCPs).

A recent survey classifies blockchain interoperability studies
in three categories: Cryptocurrency-directed interoperability ap-
proaches, Blockchain Engines, and Blockchain Connectors [9].
Cryptocurrency-directed approaches are directed to enabling the
transfer of digital assets (e.g., cryptocurrencies) across homo-
geneous and heterogeneous blockchains. The cryptocurrency-
directed approaches typically rely on protocols leveraging public
blockchains, as they assume that gateways are not trusted.
As a result, these approaches are difficult to integrate with
permissioned blockchains, that support with arbitrary assets
and smart contracts. The second category are the blockchain
engines, which enable creating application-specific blockchain
that can communicate with its other instances. These solu-
tions can benefit from implementing gateways, providing each
application-specific blockchain (e.g., applications running on
a parachain) self-sovereignty, regarding communications with
outter blockchains. The third category, blockchain connectors
include trusted relays, blockchain agnostic protocols, blockchain
of blockchains solutions, and blockchain migrators. Trusted
relays are software components, typically centralized, where
escrows route cross-blockchain transactions.

The same survey points out several attempts to design an
architecture for blockchain interoperability and bring about the
common vocabulary used in this context. A pair of homogeneous
blockchains are blockchains powered by the same environ-
ment (e.g., an EVM-based [42] blockchain pair). On the other
hand, heterogeneous blockchains are power by different environ-
ments (e.g., Ethereum and Hyperledger Fabric [6]). Cross-Chain
Transaction (CC-Tx) and Cross-Blockchain Transaction (CB-
Tx) are transactions across blockchains, where the blockchains
are homogeneous and heterogeneous, respectively. We do not
distinguish the terms and assume that CC-Tx can be across
heterogeneous systems for simplicity.

CC-Txs enable the Internet of Blockchains (IoB), a system
where blockchains can communicate, enabling the transfer of
value and data. By enabling an IoB, we can enable a Blockchain
of Blockchains (BoB), a set of systems that realize a business use
case by leveraging multiple blockchains. For this, Cross-Chain
Communication Protocols (CCCPs) are needed. CCCPs are
protocols allowing the communication of multiple blockchains.
For simplicity, we do not distinguish between CCCPs and
cross-blockchain communication protocols. While proper ad-
vances have been made enabling interoperation between public
blockchains, interoperability amongst private blockchains is still
an open problem.

III. THE ARCHITECTURE OF HERMES

In this section, we introduce the gateway concept, as well
as Hermes. A gateway is a DLT system node based on
an underlying DLT-based system and functionally capable of
performing CC-Tx, including asset transfers [20]. A primary
gateway is the DLT system node acting as a gateway in a CC-
Tx. Primary gateways may be supported by backup gateways
for fault tolerance. Primary gateways can be a source gateway
Ggs or a recipient gateway Gr, depending on the role they play
in a CC-Tx. Source gateways initiate the gateway protocol, e.g.,
an asset transfer, data pushing/pulling. Gateways use machine-
resolvable addresses (e.g. URIs/URLs) in order to communicate

Node Node 2

| [1] <Pracess A, 1, init-initNode, Node>

Q

Log Storage API Log

| [3] initializes node
T

| [4] =Process A, 2, init-initAllNodes, (Node -= Node2)=

1121 writeLogEntry<...>
e

i
| [6] <Process A, 2, init-initAlINodes, (Node -> Node2)>
T

1[5 writeLogEntry<...>
—_—

]
| [7] <Process A, 2, ack-initAllNodes, (Node2)>
T

| [97init

]
| [8] writeLogEntry<...>
—>

| [10] <Process A, 2, success-initAllNodes, (Node2 -> Node)> _|

: [12] =Process A,3, success-initAllNodes, (Node? -> Node)> :

Node Node 2

Q Q

| [11] writeLogEntry<...> _|
L A

Log Storage API Log

Q Q

Fig. 2: Message exchange flow example. The log storage API writes the incoming message. Just one log shown for simplicity.

with other gateways, obtaining information such as public-key
certificates and protocol-specific messages.

For gateways to be crash fault-tolerant, they keep track of each
operation they do in a log (of operations). The log is a sequence
of log entries, each entry representing a step of the gateway
protocol. Each message has a schema, defining the parameters
and the payload employed in each message flow. The log data
comprises the log information retained by a gateway within a
protocol using gateways. A gateway protocol specifies the set of
messages and procedures between two gateways for their correct
functioning. The gateway protocol considered in this paper is
ODAP [22], [7].

A. Blockchain Interoperability with Hermes

HERMES is a gateway system that enables DLT interoperabil-
ity based on gateways. This system has four layers, allowing
for end-to-end communication. The gateway protocol layer
implements any standards that a specific gateway implemen-
tation needs to comply with (e.g., travel rule [19]). ODAP,
a gateway-based CCCP that realizes asset transfers, allows
realizing technical interoperability for asset transfers. It is built
on top of a distributed recovery protocol, providing reliability in
the presence of crashes. On top of the gateway protocol stands a
concrete implementation of a gateway. Jointly with the gateway
protocol, it provides support for semantic interoperability [9],
unlocking the value level. More specifically, in the value level,
the business logic is defined for clients using gateways, allowing
them to attribute value to the assets exchanged with ODAP.
The whole stack provides atomicity, consistency, isolation, and
durability of CC-Tx. Figure 3 represents HERMES’ architecture.

Our architecture is flexible and modular, as its components
are pluggable. Modularity allows building a system that can be
adapted to specific needs. In this paper, we instantiate HERMES
with the ODAP-Gateway, the ODAP CCCP, and its crash fault-
tolerant distributed recovery protocol, ODAP-2PC. The whole
stack allows a business case, gateway-to-gateway asset transfers,
providing the basis for unidirectional asset transfers, expressed
in detail in Section V. The Hermes Client allows to implement
the business logic, realizing semantic interoperability.

Technical
l ODAP Interoperability
pistributed] ODAP-2PC
Recovery

Fig. 3: The architecture of Hermes

B. System Model

We consider an asynchronous distributed system composed of
two types of participants: clients and gateways. Clients are in
charge of starting transactions and are connected to gateways
that are connected to blockchains. More specifically, every
gateway is a node from a DLT system authorized to act on
it (manage assets, identify participants) via, for example, smart
contracts. Gateways can communicate with other gateways and
can crash (i.e., becoming unresponsive). We assume that there
are no Byzantine or arbitrary faults. We assume blockchains are
secure, so they fail only by crashing. We consider a blockchain
secure if the data stored is immutable, transparent to all their
participants, traceable, and, generally, the consensus mechanism
cannot be subverted by malicious parties.

To recover from these crashes, gateways store in persistent
storage data about the step of their protocol. Gateways are
honest-but-curious, i.e., follow the protocol, but will attempt
to learn all possible information from legitimately. received
messages. HERMES provides the following properties:

e P1 Atomicity: Transactions either commit on all underlying
ledgers or entirely fail.

e P2 Consistency: All gateways that reach a decision on a
CC-Tx reach the same, either commit or abort. The state
of the underlying ledgers reflect that decision.

e P3 Durability: Once a transaction has been committed, it
must remain so regardless of any component crashes.

o P4 Isolation: When a transaction is issued, all the under-
lying assets are locked.

o P5 Auditability: Any CC-Tx executed can be inspected by
the involved parties.
o P6 Termination: If a gateway proposes a transaction, it is
eventually committed or aborted.
To satisfy these properties, HERMES leverages ODAP and
ODAP-2PC.

C. Threat Model

ODAP assumes a trusted, secure communication channel
between gateways (i.e., messages cannot be spoofed or altered
by an adversary) using TLS 1.3 or higher, i.e., the receiver of
the communication will be able to ascertain the authenticity and
validity of the communication. Each gateway has a public and
private key pair. New TLS sessions [34] are created when a
gateway crashes and then recovers. Clients connect to gateways
using a credential scheme such as OAuth2.0 [15].

The distributed recovery protocol has assumptions regarding
log management. Log entries need integrity, availability, and
confidentiality guarantees, as they are an attractive attack point
[32]. Every log entry contains a hash of its payload for guar-
anteeing integrity. If extra guarantees are needed (e.g., non-
repudiation), a log entry might be signed by the gateway creating
it (e.g., with ECDSA [23]). Availability is guaranteed using
the log storage API, which connects a gateway to dependable
storage (local, external, or DLT-based). Each underlying storage
provides different guarantees. Access control can be enforced
via the access control profile that each log can have associated
with, i.e., the profile can be resolved, indicating which client can
access the log in which condition. Access control profiles can be
implemented with access control lists for simple authorization.
The authentication of the entities accessing the logs is done at
the log storage API level (e.g., username and password authen-
tication in local storage vs. blockchain-based access control in
a DLT). We assume the log is not tampered with or lost.

While we consider both gateways to be trusted, we consider
a probabilistic, polynomial-time adversary who can corrupt any
gateway to prevent the protocol from achieving liveness. The
adversary can do this by causing a gateway crash, interrupting
an asset transfer. However, we assume that gateways do not
deviate from the protocol.

IV. OPEN DIGITAL ASSET PROTOCOL

In this section, we present the building blocks of Hermes:
ODAP, along with its messaging and logging flow, and the
distributed recovery mechanism, ODAP-2PC.

A. ODAP and Properties

The ODAP protocol is a gateway-to-gateway unidirectional
asset transfer protocol that uses gateways as the systems con-
ducting the transfer [22]. An asset transfer is represented in the
form T : G; 23 G5, where a source gateway G transfers x
asset units from type a from a source ledger Bg to a recipient
ledger Bg, via a gateway Go.

The source gateway issues a transfer such that x asset units
will be unavailable at the source DLT and become available at
the target DLT. A recipient gateway is the target of an asset
transfer, i.e., follows instructions from the source gateway. Her-
mes provides as strong durability guarantees as to the underlying

durability guarantees of the chosen data store. If the datastore is
a blockchain, Hermes can be considered to achieve transaction
durability, if transactions are immutable and permanently stored
in a secure decentralized ledger.

Hermes provides the durability guarantees that the infrastruc-
ture gateways are connected to.

The transfer process is started by a client (application) that
interacts with the source gateway. The source gateway then deals
with the complexity of translating an asset transfer request to
transactions targeting both the source and target DLT systems.
The gateway also knows other gateways, either directly or via
a decentralized gateway registry. ODAP has several operating
modes, but here we solely consider the relay mode. The relay
mode realizes client-initiated gateway to gateway asset transfers.

In ODAP, a client application interacts with its local gateway
(source gateway GS) over a Type-1 APIL. The existence of this
API allows the client to provide instructions to GS (correspond-
ing to the source gateway) concerning the assets stored in the
source DLT and the target DLT (via the recipient gateway, GR).
It is possible that the client has complex business logic code
that triggers behavior on the gateways. Hence, ODAP allows
three flows: the transfer initiation flow, where the process is
bootstrap, and several identification procedures take place; the
lock-evidence flow, where gateways exchange proofs regarding
the status of the asset to be transferred; and the commitment
establishment flow, where the gateways commit on the asset
transfer. The schema of the messages exchanged by the ODAP
protocol is depicted in Appendix A.

Figure 4 represents ODAP. When an end-user wants to
perform an asset transfer, gateways conduct such process. In
the transfer initiation flow (Phase 1), both gateways resolve
identities, asset information (via the asset profiles) and establish
a secure channel. This verification includes verifying the asset
profile validity, the travel rule status, and the pair originator-
beneficiary of the transaction [22]. In the lock-evidence verifica-
tion flow (Phase 2), claims on the status of assets are exchanged,
and their correspondent proofs are persisted. The persistence of
asset status proof allows for non-repudiation and accountability,
proving useful in case of a dispute.

Theorem I (Isolation): Let there be an instance of ODAP, with
a source gateway Gg and a recipient gateway Gpr, operating on
an asynchronous environment. Given a lock primitive LOCK that
prevents assets from being used, if there is a timeout J; (applied
to steps 2.3 and 3.3 of ODAP), then ODAP provides transaction
isolation.

Proof: In this context, transaction isolation implies that a certain
asset is locked. At various points of the protocol, both Gg and
Gr are waiting for messages before proceeding. In particular, in
steps 2.3 and 2.4, where the logging procedure depends on the
asset lock’s success. A trigger d;, defining an interval before an
asset is used to assure that an asset is securely locked, even in
probabilistic-based consensus blockchains. After d; counterparty
Gr can produce a log entry with the asset locking proof. When
LOCK is called, assets are locked, rendering any attempt of
writing fruitless. A similar process occurs in step 3.3. Thus,

as assets cannot be changed up to step 3.7, ODAP guarantees
transaction isolation. []

ODAP-2PC provides transaction isolation by pre-locking as-
sets before the commitment of an asset transfer.

Q

R1 Source Gateway GS Recipient Gateway GR R2

| 0: A CC-Tx asset
| transferis issued

|
1 Flow
T

‘;:| Phase 1 - Transfer Initiati

i 1: Create channel

=

i Verify assets

'=| Phase 2 - Lock-Evidence Verification Flow Iﬁ'

i
1 2.1: Transfer init

i 2.2: ACK transfer init

i 2.3: Lock asset |
[S

| 2.4: ACK lock attempt
T

| 2.5 Lock asset |
! confirmation !
-

! 2.6: ACK lock

-

z' Phase 3 - Commitment Establishment Flow |=

T T
| 3.1: Commit prepare

| 3:21 ACK commit prepare |
! 3.3: Lock final
-~

! 3.4: Commit-final

' 3.5: Create asset !

| 3.6: ACK final

| 3.7: Transfer complete

R1 Source Gateway GS Recipient Gateway GR R2

Q Q Q Q

Fig. 4: Simplified sequence diagram depicting ODAP. A transfer
is issued by an end-user to the gateway (G1), which then
manages on-chain resources (L1), and communicates with a
counterparty gateway (G2). The asset transfer corresponds to
the creation of L2.

Finally, at the Commitment Establishment Flow (Phase 3),
assets are escrowed. In practice, assets are locked on the source
ledger and represent those created on the target ledger. The
lock of assets prevents double-spend attacks. ODAP aims at
providing termination, a non-trivial problem when considering
distributed transactions [5]. Thus, we consider three processes
on ODAP, p1 = transfer initiation flow, ps =lock-evidence flow,
and ps = commitment establishment flow. Process p; has 2
steps, po has 6 steps, and p3 has 6 steps. Thus, a normal end-
to-end ODAP flow would have 14 steps.

B. Message and Logging Flow

We consider the set of logging nodes N' = {Gs,Gr},
with log entry requests with the format <phase, step,
type-operation operation, nodes>. Within pro-
cesses, two types of operations are considered: private opera-
tions and public operations. Private operations involve only one
gateway, requiring two log entries, the intention of executing a

command and the confirmation of the execution. This serves to
handle crashes in systems with only one node. Public operations
are operations which state is known by more than one node.
Intuitively, a private operation only is only known by the node
executing it, whereas public operations involve several nodes,
and thus are perceived by more nodes than the one executing it.

The message flow generates a variable number of log entries,
depending on the situation: i) a private operation completes suc-
cessfully, generating three log entries (init-X, exec-X, done-X);
ii) a private operation fails, generating three log entries (init-X,
exec-X, fail-X); iii) a public operation completes successfully,
generating at least four log entries (init-X, exec-X, done-X, ack-
X), and iv) a public operation fails, generating four log entries
(init-X, exec-X, fail-X, ack-X). Given that a normal ODAP flow
has 14 steps, one would expect at least 42 log entries.

Source Gateway GS Recipient Gateway GR Log Storage API

| [1]: writeLogEntry <pl, 1, init-validate, (GS->GR)=>

| [2]: initiate ODAP's phase 1 _|
T 1

| [31: writeLogEntry <pl, 2, exec-validate, (GR)>

| [4]: execute init from p1

| I5l: writeLogEntry <pl. 3. done-validate. (GR)>

| [6]: writeLogEntry <p1, 4, ack-validate, (GR->GS)> _|

|_[7: validation complete

| | |
Source Gateway GS Recipient Gateway GR Log Storage API

Q Q

Fig. 5: Message flow regarding the validation operation, of
ODAP’s phase 1.

Let us consider an example where there is an asset transfer
a,l . .
Gs - Ggr. We depict a message exchange with content m

from Gg to G by Gs =5 Gg. The reply from Gp to Gg is

represented by G a(—7>n) Gs, where « is a function that given an
operation, step, and input from a counterparty gateway, returns
the response to it. Figure 5 illustrates part of the message flow
involving the public operation pl, the ODAP’s first phase. Note
that one operation has been performed before, corresponding to
three log entries (init, exec, done), and to a Gg client issuing
an asset transfer. Thus, the first log entry from p; has index
4. In the transfer initiation flow, where Gg initiates a transfer
of one asset a to Gy, the first step is to resolve identities. To
fulfill step 1, Gg takes two actions: 1) it expresses that Gr will
be informed to initiate an asset transfer; and 2) it sends that
message to Gr. These messages are sent to the Log Storage
API, that generates the appropriate log entries [= (P! =< p,,
1, init-validate, (Gs — GRr)i, ls = P12 =< pq,2, init, (GRr) >,
lg = IP13 =< py, 3, done-init, (Gr) >, and I; = [P"* =< py, 4,
ack-validate, Gr >. Table I summarizes the exchanged messages
and the log entries they generate. Note that these log entries are
simplified, for illustration purposes. ODAP logs have a well-
defined schema, and extra parameters, illustrated later in Section
IV-C.

We consider a log storage API that allows developers to
be abstracted from the storage details (e.g., relational vs. non-
relational, local vs. cloud vs. DLT-based) and handles access
control if needed. In the next section, we detail the functioning
of the log storage APL

TABLE I: Logging flow regarding the validation operation, of ODAP’s phase 1

Event From To Log ID Log Content Operation Type
G triggers the validation operation Gs Gr ls=1P"' <pl, 1, init-validate, (GS->GR)> validate init
Gr executes the validation operation X Gr Is=1P12 <pl, 2, exec-validate, (GR)> validate exec
GRr completes the validation operation X Gr g =1P13 <pl, 3, done-validate, (GR)> validate done
GR informs Gg Gr Gs l7 = P14 <pl, 4, ack-validate, (GR->GS)> validate ack

C. Log Storage API

The log storage API allows developers to abstract operations
on the log, focusing on the development of gateway protocols.
Our API uses the following primitives:

e initializeLog (y): returns a reference to an empty
log L, stored on the support . The support can be local
Yiocals €loud Yeioud, Or @ blockchain ~p,..

e getLogSupport (): returns the support 7.

e writeLogEntry (I,L): writes a log entry [in the log
L, stored on the support 7.

e getLogEntry (7): returns the log entry [;.

e getLogLength: returns the length of the log, i.e., |£].

e getLatestLogEntry: returns the log entry /; such that
ﬂll T >]

e getLog: returns L.

This API can be exposed as a REST API, allowing for the log
storage API to be hosted in an execution environment different
from the one running the gateway implementation. We consider
the log file to be a stack of log entries. Each time a log entry
is added, it goes to the top of the stack (has the highest index).
Logs can be saved either locally (e.g., Vioca: = computer’s disk)
and may also be saved in an external service (e.g., Veioud =
cloud storage service) or even in a DLT (e.g., 75, = Ethereum).

Depending on the support, logs will have different privacy
levels. On support v;0cq1, logs are isolated, each gateway keeping
its entries private. In case of a crash, the crashed gateway will
retrieve the most updated version of the log: if it is local,
it needs to require it from other gateways (and thus being
susceptible to misbehavior from other gateways). This mode
thus requires substantial trust on other gateways. The DLT-based
repository, 7., offers strong reliability concerning log-saving,
due to its immutability, transparency, and traceability [32], [8].
In particular, this method offers accountability because persisted
log entries are non-repudiable, traceable, and cannot be changed;
it offers high-availability because they are replicated across all
nodes participating in the network. The cloud support Veioud
offers a tradeoff between 7;ocq; and 7., both in terms of cost
and integrity guarantees. As this support is mediated by a cloud
provider, trust is put on the provider instead of uniquely on the
counterparty gateway. However, it is likely to be more costly
than the local support.

Given a secure v = 7., Hermes provides auditability by
keeping an immutable, traceable, distributed chain of log
entries. Extra guarantees are needed if v = Yiocal, Veloud-

Format of log entries: The log entries’ format should account
for three phases, in case the gateway protocol is ODAP. In
Section IV-B we introduced a simplified version of a log entry

for illustration purposes. The mandatory fields for a log entry
for ODAP-2PC are:

ODAP-2PC Log Schema — Mandatory Fields

1) Session ID: unique identifier (UUIDV2) representing an
ODAP interaction (corresponding to a particular flow)

2) Sequence Number: represents the ordering of steps
recorded on the log for a particular session

3) ODAP Phase ID: flow to which the logging refers to.
Can be Transfer Initiation flow, Lock-Evidence flow, and
Commitment Establishment flow.

4) Source Gateway ID: the public key of the gateway
initiating a transfer Source DLT ID: the ID of the
gateway initiating a transfer

5) Recipient Gateway ID: the public key of the gateway
involved in a transfer Recipient DLT ID: the ID of the
gateway involved in a transfer

6) Timestamp: timestamp referring to when the log entry
was generated (UNIX format)

7) Payload: Message payload: contains subfields Votes
(optional), Msg, Message type. The field Votes refers
to the votes parties need to commit in the 2PC. Msg is
the content of the log entry. Message type refers to the
different logging actions (e.g., command, backup).

8) Payload Hash: hash of the current message payload

Apart from mandatory log fields, the log schema for ODAP-
2PC contains optional fields. The logging profile field contains
the profile regarding the logging procedure. If not present,
Y = Yiocal 1S assumed. The Source Gateway UID is the
unique identifier (UID) of the gateway initiating a transfer. The
Recipient Gateway UID is the UID of the gateway involved in
a transfer. The Message Digest is a gateway signature over the
log entry. The Last Log Entry is the hash of the previous log
entry. Finally, the Access Control Profile is the field specifying
a profile regarding the confidentiality of the log entries being
stored; in particular, this field can be used to parse access control
policies to the supports managing logs. Next, we introduce the
ODAP-2PC, a distributed recovery mechanism for gateways.

D. Distributed Recovery Procedure

One of the key deployment requirements of gateways for asset
transfers is a high degree of gateways availability. A distributed
recovery procedure then increases the resiliency of a HERMES
gateway by tolerating faults. Next, we present an overview of
ODAP-2PC.

ODAP-2PC Overview: The protocol is crash fault-tolerant,
so the gateways are trusted to operate the ODAP protocol as
specified unless they stop. We envisage ODAP-2PC to support
two strategies to increase the availability of gateways [7]: (1)
self-healing mode: after a crash, a gateway eventually recovers,
informs other parties of its recovery, and continues executing
the protocol; (2) primary-backup mode: after a crash, a gateway

Source Gateway GS Recipient Gateway GR Log Storage API

111k writeLogEntry <pl, 1, init-validate, (GS->GR)=>
|

V[2] A Crash &

| [3] recover

i [4] <pl, 1, RECOVER, GR>

| :[5] getLogEntry(i) |
—_—
| [6] logEnt i
1161 logEntries

i _[7] send updated log ul

| [8] process log

i [9] updateLog(ul)

| [10] confirm recovery

11111 acknowledge recovery |

| [121: <pl,2.init-validateNext, |G5-=GR)=
i T

Source Gateway GS Recipient Gateway GR Log Storage API

Q Q Q

Fig. 6: Gg crashing before issuing init-validation to Gp

may never recover, but that timeout can detect this failure [5];
if a node is crashed indefinitely, a backup is spun off, using the
log storage API to retrieve the log’s most recent version.

In self-healing mode — the mode we detail in this paper
— when a gateway restarts after a crash, it reads the state
from the log, and continues executing the protocol from that
point on. We assume that the gateway does not lose its long-
term keys (public-private key pair) and can reestablish all TLS
connections. In Primary-backup mode, we assume that after
a period &; of the failure of the primary gateway, a backup
gateway detects that failure unequivocally and takes the role of
the primary. The failure is detected using heartbeat messages and
a conservative value for ;. For that purpose, the backup gateway
does essentially the same as the gateway in self-healing mode:
reads the log and continues the process. In this mode, the log
must be shared between the primary and the backup gateways.
If there is more than one backup, a leader-election protocol must
be executed to decide which backup will take the primary role.

In both modes, logs are written before operations (write-
ahead) to provide atomicity and consistency to the protocol used
for asset exchange. The log-data is considered as resources that
may be internal to the DLT system, accessible to the backup
gateway and possible other gateway nodes.

There are several situations when a crash may occur. Figure 6
represents the crash of Gg before it issues a validation operation
to Gr (steps 1 and 2). Both gateways keep their log storage
APIs, with 7;ocq;. For simplicity, we only represent one log
storage API In the self-healing mode, the gateway eventually
recovers (step 3), building a recovered message in the form
<phase, step, RECOVER, nodes> (step 4). The non-
crashed gateway queries the log entries that the crashed gateway
needs (steps 5, 6). In particular, Gg obtains the necessary log
entries at step 7 and compares them to its current log. After that,
Gs attempts to reconcile the changes with its current state (step
8). Upon processing, if both log versions match, then the log is
updated, and the process can continue. If the logs differ, then
Gg calls the primitive updateLog, updating its log (step 9)
and thus allowing the crashed gateway to reconstruct the current
state. In this particular example, step 9 would not occur because
operations exec-validate, done-validate, and ack-validate were

Source Gateway G1 Recipient Gateway G2 Log Storage API

1101k writeLogEntry <pl, 1, init-validate, (G5->GR)=>

| [2]: initiate ODAP's phase 1

| [314 Crash 4

| [4]: writeLogEntry <pl, 2, init, (GR)=>

| [5]: execute init from pl
h

| [6]: writeLogEntry <p1, 3, done-init, (GR)>

| [71: writeLogEntry <p1, 4, ack-init, (GR->GS)=>

| [8] =p1, 1, RECOVER, GR>
|

\ [9] getLogEntry(i)

! 10] logEntri
:‘[1 logEntries

! _[11] send updated log ul

i [12] process log

| [13] updateLog(ul)

! [14] confirm recovery

i< [15] acknowledge recovery 3

I |
1 [16]: <pl,2,init-validateNext, (GS->GR)>

Source Gateway G1 Recipient Gateway G2 Log Storage API

Fig. 7: Gg crashing after issuing the init command to Gr

not executed by Gg. If the log storage API is on the shared
mode, no extra steps for synchronizations are needed. After
that, it confirms a successful recovery (steps 10, 11). Finally,
the protocol proceeds (step 12).

Figure 7 represents a recovery scenario requiring further
synchronization. At the retrieval of the latest log entry, Gg
notices its log is outdated. It updates it, upon necessary vali-
dation, and then communicates its recovery to Gr. The process
then continues as normal. (for instance, corresponding to exec-
validate, done-validate, and ack-validate)

1) The ODAP-2PC Protocol: In this section, we present
the ODAP-2PC protocol. In particular, this protocol is used at
ODAP’s Phase 3, crucial for the atomicity and the consistency
of asset transfers. We consider two parties: the coordinator Gg,
and the participant Gr. The coordinator manages the protocol
execution while the participant follows the coordinator’s instruc-
tions.

ODAP-2PC is a 2PC protocol able to detect and recover
from crashes, delivering the effort to execute an asset transfer
starting at ODAP’s phase 3: the commitment establishment flow.
Crashes at other phases of the ODAP are handled by the self-
healing mechanism, supported by the messaging and logging
mechanism. In phase 3, sensitive messages that include the lock
and unlocking of assets may not arrive due to failures (e.g.,
communication failures, gateway crash due to power outage). To
detect crashes, we use a timeout §c. However, processes may
wait for the crashed gateway to recover for an unbounded times-
pan, wasting resources (e.g., locked assets). To avoid this, we
introduce an additional timeout d,,pqck. When a gateway does
not recover before this timeout, a timeout action is triggered,
corresponding to the rollback protocol. A possible rollback
protocol cancels the current transactions by issuing transactions
with the contrary effect, guaranteeing the consistency of the
DLT whose gateway is not crashed. Upon recovery, the crashed
gateway is informed of the rollback, performing a rollback
too. This process guarantees the consistency of both underlying

DLTs.

Algorithm 1: ODAP-2PC Protocol

Input: Coordinator Gg, Participant Gr, Asset a, Gateway primitives
PRE_LOCK, LOCK, COMMIT,CREATE_ASSET,
COMPLETE, ROLLBACK

Result: Asset a transferred from Gg to G

1 POgg =1 > rollback list for Gg
2 POgR =1 > rollback list for Gr
3 > Pre-Voting Phase
4 preLock = G5.PRE_LOCK(a) > step 2.3
5 POg .append(preLock)
6 > Voting Phase
7 Gs wtifeq gr > step 3.1
8 wait until G a(wgmq) Gs > step 3.2
9 > Decision Phase
w0 if G “57Y G = NO then

b _
u Gs abort0 Gr > otherwise, Gr a(votezreq) Gs = YES
12 Gs.ROLLBACK(POg) > undo Gg.preLock(a)
13 end if
14 lock = Gg.LOCK(a) > step 3.3
15 POg .append(lock)
16 commit = Gg.COMMIT() > step 3.4

17 if commit =1 then

18 Gs abort0) Gr
19 Gs.rollback(POgy) > undo Gg5.LOCK(a)
20 end if

commit
21 Gg —
22 a’ = Gr.CREATE_ASSET() > step 3.5
23 POg , .append(a’)
24 wait until G a(uﬂ;mt) Gs > step 3.6
2 if G “O™) Gy = COMMIT then
% | Gs.COMPLETE() > step 3.8
27 end if
28 else

abort() . . .

29 Gs — ' Gr > otherwise, Gr failed the commit

> undo Gg locks
> undo Gr.CREATE_ASSET()

30 Gs.ROLLBACK(POg)
3l Gr.ROLLBACK(POg)
32 end if

33 return > asset transferred

Algorithm 1 depicts the ODAP-2PC. A coordinator Gg and
a participant Gi perform a CC-Tx T, that typically is an asset
transfer of x number of a assets, i.e., T : Gg Y Gr. Any
time a party ABORTS, the protocol stops, and that transaction
is considered invalid (and thus the run of the protocol fails).
We define a set of gateway primitives ¥ = {PRE_LOCK,
UNLOCK, LOCK, COMMIT, CREATE_ASSET, COMPLETE,
ROLLBACK}, such that they realize pre-locking an asset,
locking an asset, unlocking an asset, committing to a CC-Tx,
creating an asset, asserting for the end of the protocol, and
performing a rollback, respectively. The gateway primitives are
divided into two types: off-chain primitives, and on-chain primi-
tives, represented by g7 f¢h@in and gonchain respectively. Some
off-chain primitives call their respective on-chain primitive. The
protocol receives a set of gateway primitives that realize the
commit, locking, rollback and other operations. Lists POg, and
POg,, track the operations to be rolledback in case of failure
for Ggor Gp, respectively.

First, in the session opening, the asset to be transferred is
agreed on. At the pre-voting phase, the source gateway initiates
the process, pre-locking an asset (executing the transaction right
to the point before its commitment, at step 2.3, line 4). The
recipient gateway confirms this pre-locking, issuing a VOTE-

REQ to its counterparty (line 7). The recipient gateway replies
either YES or ABORT (line 8), starting the decision phase.
Note that the eventual ABORT, at line 8, does not require a
rollback, because so far no on-chain operations took place. At
the beginning of the decision phase, if G replies NO, then the
pre-lock is rolledback, and the transaction aborted (lines 11 and
12). Otherwise, Gg tries to lock the asset to be transferred (line
14) and commit that action (line 16). The recipient gateway
completes the pending transactions (line 22) and sends an
acknowledgment message back to the source gateway (line 24).
Upon the second commit, the source gateway completes the
process, closing the session (line 26). However, if Gg cannot
commit (line 25 is not COMMIT), the transaction is aborted,
and the respective rollbacks are triggered.

If the participant G does not reply on the blocking operations
(within ¢ < g, Gs considers Gg crashed, and starts the recovery
protocol). The recovery protocol may be trivial: in ODAP-
2PC, firstly, the gateway awaits for the counterparty gateway
to recover (by assumption, it does). Upon recovery, the process
depicted by steps 4-11 from Figure 6 take place. Conversely, if
Gs does not respond within ¢ < dg, the same process occurs. It
is worth noting that the coordinator may issue the rollback at any
point t > dro11pack, Where drop1pack > OR, 1.€., it does not need to
wait indefinitely for the participant to recover. For both cases,
if the recovering awaiting period is greater than the rollback
timeout protocol, i.e., t > dronback, the rollback protocol is
triggered.

ODAP-2PC provides transaction consistency by employing a
self-healing strategy based on a write-ahead log: all parties
either COMMIT or ABORT the CC-Tx (i.e., the asset transfer).
The rollback protocol assures the consistency of the underlying
DLTs.

Theorem 2 (Termination): Let there be an instantiation of

ODAP-2PC in the self-healing mode, with a coordinator Gg and
a participant G, operating on an asynchronous environment.
Given a coordinator timeout dg and a participant timeout Jp,
ODAP-2PC assures that ODAP terminates.
Proof: At various points of the protocol, both Gg and Gp are
waiting for messages before proceeding, in particular at lines 3,
4, and 17. In line 3, Gi waits for a VOTE-REQ message. Since
this gateway can decide to abort before it votes YES, if it has
the timeout action triggered, it can abort and stop the process. In
line 4, Gg is waiting for a YES or NO message. At this stage,
there is still no decision on how to proceed (Gg still did not
decide to COMMIT). Thus, the coordinator can decide abort in
case of timeout by sending ABORT to the other gateway and
stopping the process. In line 17, in case it voted YES, gateway
Ggr is waiting for a COMMIT or ABORT message. In case
of a crash, Gr gateway remains blocked until Gg recovers. By
assumption, there is an upper bound in which gateways recover
from crashes. Thus, gateways will be able to communicate and
thereby reach a decision. [

ODAP-2PC does not block indefinitely, providing liveness
regarding its termination.

2) Rollback Protocol: The process of rolling back
blockchain-based transactions is not trivial. As most blockchains
are immutable, rolling back means issuing a transaction with
the opposite effect of the first. We call this a cancelling a
transaction. For example, cancelling a PRE_LOCK(a) and
LOCK would imply issuing a transaction unlocking a, whereas
CREATE_ASSET would imply the destruction of a created
asset. The rollback protocol includes two parties: the cancelling
gateway, and the counterparty gateway. The cancelling gateway
realizes the need of cancelling one or more transactions,
initiating the rollback protocol, and propagating eventual
corrective measure commands to the counterparty gateway.
There is a need of involving a counterparty gateway, to ensure
the consistency of the protocol.

The rollback process occurs as follows: 1) the cancelling
gateway undoes the transactions to be rolledback, by issuing
transactions with the contrary effect; 2) the same gateway sends
an acknowledgment back to the conterparty gateway; and 3)
conterparty gateway undoes all its pending transactions, which
can lead back to step one, where the counterparty gateway
serves as the cancelling gateway. This recursive protocol may
generates a cascade effect where several transactions from both
blockchains need to be cancelled. Our rollback protocol is
triggered at step 3.3 or 3.5. At step 2.3, if a lock is unsuccessful,
there is still no transaction to undo (an ABORT is sent).
Steps 2.4 and 3.7 are assumed to be successful, i.e., issuing
a transaction that creates a log entry succeeds. In particular, if
the log entry cannot be persisted in the blockchain support, an
alternative support is used by the Log Storage API, and the
respective party is warned.

The ODAP-2PC protocol provides transaction atomicity,

It is worth noting that the ODAP-2PC, and its rollback
protocol depend on the implementation of a set of gateway
primitives, as well as a specific asset schema. In the next section,
we briefly present a use case leveraging gateway primitives.

V. USE CASE: GATEWAY-SUPPORTED CROSS-JURISDICTION
PROMISSORY NOTES

In this section, we present a use case implementing digital
asset transfers, benefiting from the gateway paradigm. The
digital assets to be exchanged are defined as an asset profile,
which is ongoing work at the IETF [37]. An asset profile is
“the prospectus of a regulated asset that includes information
and resources describing the virtual asset”. A virtual asset, on
its turn, is “a digital representation of value that can be digitally
traded” [37]. Asset profiles can be emitted by authorized parties,
having the capability to legally represent real-world assets (e.g.,
real estate).

A. Asset Profile

The Asset Profile Definitions for DLT Interoperability draft
presents an unambiguous manner of representing a digital asset,
independently of its concrete implementation [37]. This is
notably for tokenization, as a physical asset might be represented
in a multitude of ways. Thus, it is important to find a sufficiently

generic schema that allows representing an arbitrary digital
asset, and thus enable asset transfers. Perhaps most importantly,
its definition assures that heterogenous DLTs refer to the same
asset within a transfer. An asset profile contains the following
fields (from [37]): issuer, asset code, asset code type, issuance
and expiration dates, verification endpoint, digital signature,
ledger requirements, among others.

Asset Profile Schema

10

—_

)
2)

Issuer: The registered name or legal identifier of the
entity issuing this asset profile document.

Asset Code: The unique asset code under an authorita-
tive namespace assigned to the virtual asset.

Asset Code Type: The code-type to which the asset
code belongs under an authoritative namespace.
Issuance date: The issuance date of the Asset Profile
JSON document.

Expiration date: The expiration of the Asset Profile
JSON document in terms of months or years.
Verification Endpoint: The URL endpoint where any-
one can check the current validity status of the Asset
Profile JSON file.

Digital signature: The signature of the Issuer of the
Asset Profile.

Prospectus Link: The link to any officially published
prospectus, or non-applicable.

Key Information Link: The link to any Key Informa-
tion Document (KID), or non-applicable.

Keywords: The list of keywords to make the Asset Pro-
files easily searchable. Can be blank or non-applicable.
Transfer Restriction: Information about transfer re-
strictions (e.g. prohibited jurisdictions etc.), or non-
applicable.

Ledger Requirements: Information about the specific
ledger mechanical requirement, or non-applicable..

3)
4)
5)

6)

7
8)
9)
10)

11)

12)

We refer to this asset profile as A,. For generic protocols
manipulating assets (e.g., transfer, creating), this asset profile
can provide the necessary attributes for trust establishment. For
instance, gateways should be able to verify its counter party
identity in case of an asset transfer. Moreover, the asset profile
and asset code should be identifiable and retrievable, allowing
different attributes to be parsed as inputs to the asset gateway
primitives.

B. Asset Gateway Primitives

Based on the proposed digital asset schema, we present
pseudo-code for the gateway primitives used in ODAP-2PC.
We recall the gateway primitives: off-chain primitives (COM-
MIT, ROLLBACK, and COMPLETE) and on-chain primitives
(PRE-LOCK, LOCK, UNLOCK, and CREATE_ASSET). The
sequencing of off-chain operations, performed by gateways,
and on-chain operations allow the asset transfer. For instance,
based on a specific asset profile A,,, gateways validate eventual
restrictions (e.g., jurisdiction restrictions) on a certain asset, at
the validation phase, prior to PRE_LOCK an asset (in case the
protocol comprises transferring an asset).

To implement the primitives, we define an additional field on
A, to represent a digital asset: state. Four possible states exist:
an asset is unlocked (can be used without constraints on that
ledger), pre-locked (asset will be transfered, and thus cannot be
used), locked (asset was transfered, and cannot be used), and
burnt (asset was destroyed or permanently locked).

Algorithm 2: On-chain set state

Input: Asset a, Ledger connector c, lock level {

Result: Asset a locked at [
1 assetRepresentation = c.getStateById(a.assetCode) > DLT-specific
2 assetRepresentation.state = [> pre-lock, lock, unlocked, burnt
3 c.setState(assetRepresentation) > DLT-specific

Algorithm 2 depicts the procedure to implement a PRE-
LOCK, LOCK, and UNLOCK, if the level is pre-lock, lock,
or unlock, respectively. If the level is burnt, then and additional,
DLT-specific operation needs to happen to eliminate (burn) the
asset. The PRE_LOCK primitive issues a LOCK, temporarily
locking an asset on Gg, setting the state of the asset to pre-
locked. After that, the gateway awaits for a confirmation from
the counterparty gateway of such operation. In case the protocol
fails before COMMIT, a ROLLBACK is issued by Gg, triggering
an UNLOCK transaction. The UNLOCK simply sets the state
of the pre-locked asset to unlocked, reverting the effect of the
PRE-LOCK.

If a COMMIT is successful, then two operations happen: 1)
in Gg a LOCK is issued, setting the state of the asset to locked,
meaning it cannot be used; 2) Gg issues a CREATE_ASSET,
creating a representation of the original asset on the recipient
ledger. If the whole process is successful, according to ODAP-
2PC, Gg issues a COMPLETE. All operations are logged via
the log storage API; an additional on-chain primitive LOG is
considered in case the logging takes place on-chain.

C. Using Hermes to Exchange Promissory Notes

Promissory notes are freely transferable financial instruments
where issuers denote a promise to pay another party (payee)
[41]. Notes are globally standardized by several legal frame-
works, providing a low-risk instrument to reclaim liquidity from
debt. Notes contain information regarding the debt, such as the
amount, interest rate, maturity date, and issuance place. Notes
are useful because they allow parties to liquidate the debts
and conduct financial transactions faster, overcoming market
inefficiencies. In practice, promissory notes can be both payment
and credit instruments. A promissory note typically contains all
the terms about the indebtedness, such as the principal amount,
credit rating, interest rate, expiry date, date of issuance, and
issuer’s signature. Despite their benefits, paper promissory notes
are hard to track, require hand signatures and not-forgery proofs,
accounting for cumbersome management. To address these
challenges, recent advances in promissory notes’ digitalization
include FQX’s eNote [17]. Blockchain-supported digital promis-
sory notes (eNotes) worth about half a million dollars were used
by a “Swiss commodity trader to finance a transatlantic metal
shipment” [2]. eNotes are stored in a trusted ledger covered
by the legal framework, belonging to a specific jurisdiction.
Consider the following supply chain scenario: a producer (P)
produces a certain amount of goods that sells to a wholesaler
(W). W accepted the goods, and now P issues an invoice of
value V. The wholesaler could pay in, for example, 90 days.
Because P does not want to wait up to 90 days for its payment,
it requests a promissory note from W, stating that V will be paid
in 90 days. This way, P can sell that same promissory note to a
third party. The promissory note is abstract from any physical
good being exchanged. Depending on the issuer, collateral might

11

Promissory Note Example

Issuer: FQX AG

Asset Code: CH0008742519

Asset Code Type: ISIN

Keywords: Electronic Promissory Note; eNote; Debt
Prospectus Link: N/A

Key Information Link: N/A

Transfer Restriction: shall not be transferred to the
U.S., Canada, Japan, United Kingdom, South Africa.
Shall not be transferred to non-qualified investors any-
where.

Ledger Requirements: Hyperledger Fabric v2.x.
Original Asset Location: N/A

Previous Asset Location: N/A

Issuance date: 04.09.2020

Verification Endpoint: https://fqx.ch/profile-validate
Signature Value: (signature blob)

8)
9
10)
1)
12)
13)

\.

not be needed, as the accountability for liquidating the debt is
tracked by the blockchain where it is stored.

Blockchain-based promissory notes belonging to a particular
jurisdiction are stored in a certified blockchain that exposes a
gateway. When a promissory note needs to change jurisdictions
(e.g., a promissory note issued in the USA that needs to be
redeemed in Europe), the gateways belonging to the source and
target blockchains perform an asset transfer, where the asset is
a digital promissory note. Alternatively, the gateway extends to
several jurisdictions. Below is an example of an asset profile
of a digital promissory note. Such digital promissory notes can
be trivially exchanged between blockchains using Hermes and
the ODAP-2PC protocol, where gateways belonging to different
jurisdictions (e.g., representing different blockchains regulated
by different entities) perform asset transfers.

VI. DISCUSSION

Hermes can include different gateway implementations, dif-
ferent gateway protocols, and different distributed recovery
mechanisms. Modularity and pluggability allow Hermes to be
flexible regarding different legal frameworks, supporting differ-
ent privacy and performance requirements. In particular, Hermes
can be instantiated in blockchains supporting smart contracts
that implement functionality for locking and unlocking assets.
The gateway paradigm allows integrating DLT-based systems to
centralized legacy systems by leveraging existing legal frame-
works. For extra robustness, data integrity and counterparty
performance can be attested, using trusted hardware [21], [14].
Remote attestations are particularly important, since provably
exposing internal state to external parties is a crucial requirement
for CC-Txs [4].

Gateways can also be leveraged for tasks other than asset
transfers; they can perform the function of oracles, either cen-
tralized or decentralized [9], allowing to integrate blockchains
with external systems and data providers. An oracle’s general
goal is to retrieve data, validate and deliver it to a blockchain,
or pull information from a blockchain [28]. An oracle may
provide extra functions, such as showing proof of original data,
incentivizing oracle services (e.g., rewarding nodes providing
information to the oracle), and even privacy (encrypting data).
As a gateway, Hermes can implement asset transfers through
the ODAP protocol or serve as an oracle.

A. RQI: Reliability

On primary-backup mode, n-host resiliency is provided by se-
quencing backups and using acknowledgment messages. These
messages assure that the update has progressed at least to
the following backup beyond itself. However, primary backup
introduces a latency overhead, as the client application only
retrieves the output from the message update request after n
replicas have been updated. On the other hand, the self-healing
mechanism, allied to a resilient log storage API, provides means
for developers to save the ODAP state, even in the presence of
crashes.

ODAP and ODAP-2PC assume a trade-off between reliability
and efficiency, according to the end to end principle [36]. The
more reliable a gateway is (in terms of accountability, termina-
tion, and ACID properties), the higher the overhead is in terms
of performance. The storage capability of gateways, abstracted
by the log storage API, determine gateways’ robustness, as logs
are used to dispute resolution and accountability. Shared, non-
repudiable, and immutable log entries provide better guarantees
than locally stored logs [32], [8]. Thus, the log storage API
serves two purposes: 1) it provides a reliable mean to store logs
created by all gateways involved in an asset transfer, and thus
ensures consistency, atomicity, and isolation; and 2) promotes
accountability across parties.

B. RQ2: Performance

As mentioned, a tradeoff between reliability and performance
exists. Storing logs in local storage typically has lower latency
but deliver weaker integrity and availability guarantees than
store them on the cloud or in a ledger. Generally, the more
resilient the support +y is, the higher the latency (Voe > Veioud >
Yiocal)- For critical scenarios where strong accountability and
traceability are needed (e.g., financial institution gateways),
blockchain-based logging storage may be appropriate. Con-
versely, for gateways that implement interoperability between
blockchains belonging to the same organization (i.e., a legal
framework protects the legal entities involved), local storage
might suffice.

ODAP-2PC exchanges messages to assure atomicity, leading
to blocking operations, where operations depend on the state of
the other gateway. In particular, ;. implies issuing a blockchain
transaction, several orders of magnitude slower than writing on
disk or even writing on a cloud-based storage [12], especially if
one awaits for a confirmation, depending on the blockchain, it
may require up to dozens of minutes. The self-healing mode is
compatible with the three types of logs, but the primary-backup
mode could require the log storage API on support external to
the gateway.

C. RQ3: Decentralization

Gateway-to-gateway business transactions depend on the so-
cial and technological trust that stakeholders build. In particular,
as every operation is saved on a log, this log can be used for
disputes, in case of misbehavior by any stakeholder. In particu-
lar, in case of dispute, the involved parties can inspect the logs
and recur to the legal frameworks [8] from the jurisdiction in
which the asset transfer occurs. Thus, for the legislated spaces,
and for a proper log storage support, Hermes might sufficiently

12

decentralized. While this is acceptable for enterprise scenarios,
as accountability is guaranteed, there may be cases in which
gateways are not trusted. Considering non-trusting gateways,
Hermes might not be sufficiently decentralized. Besides picking
the appropriate log storage support, one could choose from
several techniques to decentralize gateways or to enhance the
accountability level.

A first option is to implement a gateway as a smart contract:
this does not allow a gateway to deviate from its configured
behavior but has shortcomings, such as inflexibility, lack of
scalability, and operation costs. In particular, smart contracts
often lack the possibility of being integrated with external re-
sources and systems; oracles may provide some extra flexibility
[9]. Smart contract-based gateways could also need to pay
transaction fees in public blockchains, such as gas on Ethereum
[42], raising additional costs. Additional costs imply that adding
gateways on the same blockchain is not scalable.

Second, to decentralize Hermes, one could implement a
Byzantine fault-tolerant version of a gateway, similarly to what
is planned on Cactus [27]. In this case, it is not a single
gateway conducting the message delivery process, but a quo-
rum of gateways that belong to different stakeholders. In a
permissioned scenario, stakeholders could represent different
departments, with the caveat should periodically publish proofs
of state in an external repository [32]. If gateways are sufficiently
decentralized, gateways do not need to be implemented as smart
contracts. This allows better scalability than the smart contract
and flexibility in integrating legacy systems and infrastructure
with the gateways.

A third option is to secure computation leveraging trusted
hardware to enable remote attestation [21], [14]. Remote at-
testation is a method allowing a device to authenticate its
hardware and software to a centralized service, proving its
integrity, and thus its trustworthiness. Working as an additional
security layer, device-level attestations would enable gateways to
provide truthful evidence of their internal state. Evidence would
then promote trust across gateways, diminishing the risk of
collusion and misbehavior. This solution would be essential for
financial institution gateways, involving digital asset transfers
with monetary value.

D. RQ4: Security and Privacy

Gateways should assure the integrity and non-repudiation of
log entries and ensure that the protocol terminates. If an adver-
sary performs a denial-of-service on either gateway, the asset
transfer is denied but ODAP-2PC assures eventual consistency
of the underlying DLTs. Accountability promoted by robust
storage can diminish the impact of these attacks. The connection
between gateways should always provide an authentication and
authorization scheme, e.g., based on OAuth and OIDC [1], and
use secure channels based on TLS/HTTPS [34].

Gateways should be flexible enough to accommodate not only
different legal frameworks but also different notions of privacy.
Reasoning about different privacy levels, one key question is:
what should be the privacy granularity level regarding an issuer
and beneficiary transaction of a digital asset? Some regulations
imply that both parties are identified, and such records are main-
tained for several years; However, for cryptocurrency exchange

across public blockchains, privacy might be of a more significant
concern. A second question follows: what are the privacy
guarantees of the gateway performing such transfers, mainly
if logging functions are jointly performed, on blockchain-based
support? This question can be answered with privacy-policies,
and cherry-picking the information written in publicly-available
logs. Future research on the security and privacy of gateways is
needed before they are ready for production use.

Other privacy-related aspect is the encapsulation of internal
asset representation. Although gateways are working with a
specific asset schema, each gateway needs to be aware of the
asset representation by the underlying DLT (or at least DLT
client), i.e., it needs to be able to convert ODAP messages
to blockchain-specificc transactions. Thus, the gateway has the
responsability of converting a standard representation on a DLT-
specific one. If desirable, gateways can hide representation
details, providing privacy regarding asset management.

VII. RELATED WORK

Hardjono et al. proposed a gateway-based architecture in-
spired by the architecture of the Internet [20], further expanded
by recent work [19]. Vo et al. propose decentralized blockchain
registries that can identify and address blockchain oracles [38].
Such registries can be extended to support gateways. Hyper-
ledger Cactus [27] is a trusted relay connecting DLTs, whereby
a consortium of Cactus Nodes endorses transactions. Cactus uses
two families of software components that, on its sum, constitute
a gateway: validators and connectors. Validators are components
that retrieve state from blockchains, while connectors are active
components that issue transactions. The consortium can run
arbitrary business logic, including logic for asset transfers,
making Cactus a suitable infrastructure to implement gateways.
Like Cactus, HERMES is a trusted relay directed to enterprise
use cases. Our system can be decentralized using one of the
approaches detailed in Section VI. Other trusted relays can
realize the concept of gateway (e.g., [3], [4], [24], [16]). For
the sake of space, we refer readers interested in interoperability
to [9].

Generally, 2PC is not used for blockchain consensus [29],
but rather for communication across blockchains. Fynn et al.
presented a Move operation that can migrate accounts and
arbitrary computation across Ethereum virtual machine based
chains [18]. An atomic Move operation can be implemented
with 2PC. Wang et al. [40] presented a 2PC protocol for
conducting CB-Tx. In this scheme, a blockchain is elected as the
coordinator, managing the process between an arbitrary number
of blockchains. This protocol includes a heartbeat monitoring
mechanism to guarantee liveness. However, it is not clear how
are ACID properties assured, e.g., atomicity, as the authors
do not provide a rollback protocol. Our work provides ACID
properties via ODAP-2PC and the rollback protocol.

VIII. CONCLUSION

This paper introduced HERMES, a middleware that enables
blockchain interoperability across DLT-systems that can operate
under different legal frameworks. HERMES is instantiated with
ODAP, an asset transfer protocol between two gateway devices.
Hermes supports ACID properties and can assure accountability

13

by keeping an off-chain or on-chain shared log of operations.
We propose and discuss ODAP-2PC, a distributed recovery
mechanism, guaranteeing asset transfers between blockchains
to be atomic and secure. By studying Hermes’ reliability, per-
formance, decentralization, security, and privacy, we explore the
potential of gateways to respond to the current interoperability
challenge. By presenting the digital promissory note use case,
we show that Hermes is an appropriate trust anchor for enter-
prise use cases requiring cross-blockchain asset transfers. Future
work will enable several gateways to be involved in an asset
transfer (ODAP-3PC), paving the way for efficient multiparty
atomic swaps.

REFERENCES

(1]
(2]

Final: OpenID Connect Core 1.0 incorporating errata set 1.

Transatlantic Shipment of Metals Financed via FQX eNote — Treasury
Management International.

E. Abebe, D. Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy, P. Novotny,
V. Pandit, V. Ramakrishna, and C. Vecchiola. Enabling Enterprise
Blockchain Interoperability with Trusted Data Transfer. In Proceedings
of the 20th International Middleware Conference Industrial Track, pages
29-35. Association for Computing Machinery, 2019.

E. Abebe, D. Karunamoorthy, J. Yu, Y. Hu, V. Pandit, A. Irvin, and
V. Ramakrishna. Verifiable Observation of Permissioned Ledgers. arXiv
2012.07339v2, 2021.

P. ALsberg and J. Day. A Principle for Resilient Sharing of Distributed
Resources. Journal of Chemical Information and Modeling, 1976.

E. Androulaki, A. Barger, V. Bortnikov, S. Muralidharan, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Murthy, C. Ferris, G. Laventman,
Y. Manevich, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukoli¢, S. W. Cocco, and J. Yellick. Hyperledger
Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the 13th EuroSys Conference, EuroSys 2018, pages 1—
15, New York, New York, USA, apr 2018. Association for Computing
Machinery, Inc.

R. Belchior, M. Correia, and T. Hardjono. DLT Gateway Crash Recovery
Mechanism (draft-belchior-gateway-recovery-00). Technical report, 2021.
R. Belchior, A. Vasconcelos, and M. Correia. Towards Secure, Decentral-
ized, and Automatic Audits with Blockchain. In European Conference on
Information Systems, 2020.

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A Survey
on Blockchain Interoperability: Past, Present, and Future Trends. arXiv
2005.14282, 2020.

M. Belotti, S. Moretti, M. Potop-Butucaru, and S. Secci. Game Theoretical
Analysis of Atomic Cross-Chain Swaps. Hal Archives-Ouverte hal-
02414356, 2020.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. Addison-Wesley, 1987.

A. Bessani, M. Correia, B. Quaresma, F. Andre, and P. Sousa. DepSky:
Dependable and secure storage in a cloud-of-clouds. In ACM Transactions
on Storage, volume 9, pages 1-33, nov 2013.

M. Borkowski, M. Sigwart, P. Frauenthaler, T. Hukkinen, and S. Schulte.
DeXTT: Deterministic Cross-Blockchain Token Transfers. IEEE Access,
7:111030-111042, aug 2019.

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen. Principles of remote
attestation. International Journal of Information Security, 10(2):63-81,
jun 2011.

E. D. Hardt. RFC 6749 - The OAuth 2.0 Authorization Framework, 2012.
G. Falazi, U. Breitenbiicher, F. Daniel, A. Lamparelli, F. Leymann, and
V. Yussupov. Smart Contract Invocation Protocol (SCIP): A Protocol for
the Uniform Integration of Heterogeneous Blockchain Smart Contracts. In
International Conference on Advanced Information Systems Engineering,
volume 12127 LNCS, pages 134-149, 2020.

FQX. eNI™ Infrastructure - fgx.ch - Electronic Negotiable Instruments -
FQX, 2020.

E. Fynn, F. Pedone, and B. Alysson. Smart Contracts on the Move. In
Dependable Systems and Networks, 2020.

T. Hardjono. Blockchain Gateways, Bridges and Delegated Hash-Locks.
arXiv 2102.03933, 2021.

T. Hardjono, A. Lipton, and A. Pentland. Towards an Interoperability
Architecture Blockchain Autonomous Systems. [EEE Transactions on
Engineering Management, 67(4):1298-1309, June 2019.

(3]

[4]

(51
(6]

(71
(8]

[9

—

[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

(31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

T. Hardjono and N. Smith. Towards an Attestation Architecture for
Blockchain Networks (to appear). World Wide Web Journal — Special
Issue on Emerging Blockchain Applications and Technology, 2021.

M. Hargreaves and T. Hardjono. Open Digital Asset Protocol (draft-
hargreaves-odap-01), 2020.

D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital
Signature Algorithm (ECDSA). International Journal of Information
Security, 1(1):36-63, aug 2001.

L. Kan, Y. Wei, A. Hafiz Muhammad, W. Siyuan, G. Linchao, and H. Kai.
A Multiple Blockchains Architecture on Inter-Blockchain Communication.
Proceedings - 2018 IEEE 18th International Conference on Software
Quality, Reliability, and Security Companion, QRS-C 2018, pages 139-
145, 2018.

Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y. C. Hu.
Hyperservice: Interoperability and programmability across heterogeneous
blockchains. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 549-566, 2019.

N. Lynch. Multilevel Atomicity—A New Correctness Criterion for
Database Concurrency Control. ACM Transactions on Database Systems,
8(4):484-502, 1983.

H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogyvari,
S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior. Hyperledger Cactus
‘Whitepaper, 2020.

R. Miihlberger, S. Bachhofner, E. Castellé Ferrer, C. Di Ciccio, I. Weber,
M. Wohrer, and U. Zdun. Foundational Oracle Patterns: Connecting
Blockchain to the Off-Chain World. In Lecture Notes in Business In-
formation Processing, volume 393 LNBIP, pages 35-51. Springer Science
and Business Media Deutschland GmbH, sep 2020.

J. Nijsse and A. Litchfield. A Taxonomy of Blockchain Consensus
Methods. Cryptography, 4(4):32, 2020.

R. J. Patton. Fault-Tolerant Control: The 1997 Situation. IFAC Proceedings
Volumes, 30(18):1029-1051, 1997.

L. Pawczuk, M. Gogh, and N. Hewett. Inclusive Deployment of
Blockchain for Supply Chains: A Framework for Blockchain Interoper-
ability. Technical report, World Economic Forum, 2020.

B. Putz, F. Menges, and G. Pernul. A secure and auditable logging
infrastructure based on a permissioned blockchain. Computers & Security,
87:101602, 2019.

Quant Foundation. Overledger Network Whitepaper v0.3. Technical report,
Quant, 2019.

E. Rescorla. RFC 8446 - The Transport Layer Security (TLS) Protocol
Version 1.3, 2014.

K. Sai and D. Tipper. Disincentivizing Double Spend Attacks Across
Interoperable Blockchains. In First IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications, 2019.
J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4):277-288,
nov 1984.

A. Sardon, T. Hardjono, and Benedikt Schuppli. Asset Profile Def-
initions for DLT Interoperability (draft-sardon-blockchain-interop-asset-
profile-00). Technical report, 2021.

H. Tam Vo, Z. Wang, D. Karunamoorthy, J. Wagner, E. Abebe, and
M. Mohania. Internet of Blockchains: Techniques and Challenges Ahead.
In 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1574-1581, 2018.

S. Thomas and E. Schwartz. A Protocol for Interledger Payments, 2015.
X. Wang, O. T. Tawose, F. Yan, and D. Zhao. Distributed Nonblocking
Commit Protocols for Many-Party Cross-Blockchain Transactions, jan
2020.

J. S. Waterman. The Promissory Note as a Substitute for Money.
Minnesota Law Review, 14:313, 1929.

G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Byzantium version 7e819ec. Technical report, 2019.

APPENDIX A - ODAP MESSAGE FORMAT

ODAP messages are exchanged between client applications
and gateway servers (DLT nodes). They consist of functional
messages allowing protocol negotiation [22]. Messages are
encoded in JSON format, allowing for serialization, with pro-
tocol specific mandatory fields. Support for authentication and
authorization is provided, allowing for plaintext or encrypted
payloads. This servers enterprise needs.

Mandatory Log Fields for ODAP

1)
2)

3)
4)
5)
6)
7
8)
9)

10)

Version: ODAP protocol Version (major, minor)

Resource URL: Location of Resource to be ac-
cessed.

Developer URN: Assertion of developer / appli-
cation identity.

Action/Response: GET/POST and arguments (or
Response Code)

Credential Profile: Specify type of auth (e.g.
SAML, OAuth, X.509)

Credential Block: Credential token, certificate,
string

Payload Profile: Asset Profile provenance and
capabilities

Application Profile: Vendor or Application spe-
cific profile

Payload: Payload for POST, responses, and native
DLT txns

Sequence Number: Sequence Number.

