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Abstract

Auditing provides essential security control in computer systems by keeping track of
all access attempts, including both legitimate and illegal access attempts. This phase
can be useful in the context of audits, where eventual misbehaving parties can be held
accountable. Blockchain technology can provide the trusted auditability required for access
control systems. In this paper, we propose a distributed Attribute-Based Access Control
(ABAC) system based on blockchain to provide trusted auditing of access attempts. Besides
auditability, our system presents a level of transparency that both access requesters and
resource owners can benefit from it. We present a system architecture with an imple-
mentation based on Hyperledger Fabric, achieving high efficiency and low computational
overhead. The proposed solution is validated through a use case of independent digital
libraries. Detailed performance analysis of our implementation is presented, taking into
account different consensus mechanisms and databases. The experimental evaluation shows
that our presented system can effectively handle a transaction throughput of 270 transactions
per second, with an average latency of 0.54 seconds per transaction.
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1 Introduction

Access control systems exist to protect system resources from unauthorized access attempts.
Based on the system policies, security procedures within the organization, and the level of
the sensitivity of the resources, the access control systems follow one of the available access
control models.

Attribute-Based Access Control (ABAC) [24, 60] is an access control model that regulates
access permissions based on the characteristics (in this context called attributes) of subjects,
resources, and context (or environment). Access decisions are made by evaluating these
attributes based on defined policies. An overview of the ABAC model is shown in Figure 1.

ABAC provides fine-grained access control “appointed as a key requirement to minimize
the risk of information leakage and confidentiality” [9]. It has some advantages over other
access control models as, (a) It can provide fine-grained and flexible access control because
it allows an arbitrary number of attributes in access control decisions; (b) The implemen-
tation of complex policies is simple and applicable; and (c) It can provide dynamic and
effective access control decisions by involving environmental attributes in decision making.

Auditing is one of the essential controls in systems security. Auditing is the action of
tracking all access attempts, including both legitimate and illegal access attempts. Keeping
track of legitimate access attempts helps with non-repudiation, and keeping track of ille-
gal access attempts helps identifying potential threats. Auditability is also one of the key
characteristics of blockchain by providing a trustable history of traceable transactions [8].
Blockchain can exploit smart contracts to store access control policies, process access deci-
sions, store the result of access decisions, and accountability regarding stakeholders with
different incentives. Then, all access attempts toward a particular resource can be queried
from the blockchain at any point in the future. This feature can be used as an authentic proof
for non-repudiation, or it can be studied for further analysis to identify possible threats.

Subjects Resources Environmental
attributes attributes attributes

Policies

Reject access
permission

Policy Decision Point (PDP)

Grant access
Permissions

Figure 1 Attribute based access control
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Besides, blockchain presents other beneficial features that are desirable for access control
systems, such as immutability and transparency. For example, suppose a malicious system
administrator changes a policy to grant or deny someone’s access. In that case, it will be
recorded on the blockchain, and it is not possible to delete the trace of updates on policies
from the blockchain. For each policy, all history of changes applied in that policy can be
queried by permissioned users in a permissioned blockchain. However, such a problem can
be prevented by configuring smart contracts so that authenticated parties must approve any
change in access control policies before execution.

This work utilizes blockchain as a tamper-proof auditable record of data, required to regu-
late the ABAC model’s access control, and proposes a complete end-to-end solution for imple-
menting an ABAC system with the focus on policy-based architecture based on Hyperledger
Fabric permissioned blockchain!. Our contributions are summarized as follows:

—  We propose an architecture for implementing a flexible access control system based on
ABAC and permissioned blockchain.

—  We discuss our access control components including Policy Information Point (PIP),
Policy Decision Point (PDP), Policy Administration Point (PAP), which are imple-
mented as smart contracts (chaincode).

—  We provide a specific use case of digital libraries to represent the system operation
modelling.

—  We carried out experiments, and we analyzed the performance of the presented access
control application using Hyperledger Caliper> based on multiple configurations,
including different databases and consensus methods.

The remainder of this paper is organized as follows. The initial concepts of blockchain
and access control systems are presented in Section 2, followed by Section 3, which reviews
related studies. Section 4 explains the system model, architecture and representation of
designed components. A case study based on access to the digital libraries’ resources is
introduced in Section 5. Section 6 presents the evaluation of results based on the repre-
sented case study and multiple configurations. Finally, Section 7 draws conclusions on the
developed work and refers to our future developments.

2 Background
This section presents the background on blockchain, smart contracts, and access control.
2.1 Blockchain and smart contracts

Blockchain is a particular type of distributed ledger technology. The data is recorded on the
blockchain as a group of transactions called blocks. Each block has a hash value, and it links
to the previous block by referencing the hash value of the previous block in the header of
the current block. Consequently, data manipulation is not possible in the blockchain, as even
a slight change leads to an inconsistency between linked blocks, which can be recognized
easily. In order to attach a valid block to the blockchain, a consensus mechanism is applied.
There are several consensus mechanisms with a trade-off between performance and security.

Uhttps://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/caliper
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Before the development of smart contracts, blockchain applications were limited to creat-
ing cryptocurrencies and simple monetary transactions. The development of smart contracts
has provided the infrastructure for creating more diverse blockchain-based applications.
Smart contracts are executable logic encoded in a blockchain with the ability to be enforced
automatically.

Blockchain networks can be categorized as public and permissioned.

Public blockchains are open to the world, and every user can join the blockchain with
an anonymous identity, submit a transaction, and participate in consensus. Permissioned
blockchains include an additional membership layer, such that only authenticated users can
join the blockchain and interact with different components.

Today, many blockchain platforms exist, and they are geared toward implementing smart
contracts and decentralized applications. They differ in several aspects, such as the type of
the network (public or permissioned), built-in cryptocurrency, transaction workflow, perfor-
mance, privacy, cost and, most importantly, maturity. Some blockchain platforms—such as
Ethereum, Hyperledger Fabric or Corda—have mature tools, while others have very little
support for their users and developers.

Hyperledger Fabric [4] is a famous implementation of a permissioned blockchain, hosted
by the Linux Foundation. Hyperledger Fabric has a modular structure that allows component
pluggability, such as consensus, membership, and database.

The membership layer authenticates users and grants access to users based on their access
level and system policy. Because of the initial authentication in permissioned blockchains,
participants are expected to be trusted or at least semi-trusted. The endorsement policy
identifies, for every transaction, which peers must endorse and validate the transaction.
Based on the ordering service (consensus mechanism), the system can tolerate different
byzantine behaviour levels. Hyperledger Fabric has integrated the ABAC mechanism, so it
is possible to build permission groups for access control inside the blockchain network by
checking members’ attributes. These attributes define the users’ access to different elements
in the Fabric network, such as transaction submission, consensus, transaction validation and
reading the state of the ledger. However, access control parameters and permission groups
are predefined tasks involved in the Fabric network, and are not suitable for managing access
control in an off-chain application requiring different attributes and policies from those
defined in Fabric permission groups.

The modular structure of Fabric allowed to evaluate our solution based on different con-
sensus mechanisms, such as Raft and Kafka, various databases, such as GoLevelDb and
CouchDB, and customizable network configuration.

Hyperledger Fabric uses a novel execute-order-validate architecture for transaction flow,
unlike other platforms that follow order-execute transaction flow, which has multiple advan-
tages over order-execute architecture. First, Fabric separates the transaction flow into three
steps. Different entities may run each step in the blockchain network. Separating transac-
tion execution from consensus allows modular building and including elements of scalable
replicated databases. Second, it allows parallel execution in the execute step, which will be
validated later against any non-deterministic result, which is an existing drawback in order-
execute architecture. Third, it enables policy-based endorsement, resulting in optimized
usage of resources based on an application requirement. Hyperledger Fabric has integrated
the ABAC mechanism, so it is possible to build permission groups for access control by
checking members’ attributes. However, access control parameters and permission groups
have to be predefined. It is not suitable for applications that require dynamic and flexible
access control.

@ Springer
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In order to protect the privacy of users’ data, Hyperledger Fabric provides a private data
feature to protect sensitive users’ data. We have used this feature to represent the required
attributes for access permissions based on the organizations’ defined policies. The private
data is hashed, and then it will be endorsed and ordered like other data. Finally, the chain-
code writes hashed data on the ledgers of every peer. However, only organizations that
require these private attributes to give access permission have access to them. Using Zero
knowledge proofs (ZKP) [19] is another alternative that can be applied for highly privacy-
preserving case studies that require protecting all users’ attributes from all access providers
and data owners. However, ZKP requires additional time and computational resources when
compared to our solution based on Hyperledger Fabric private data feature.

Our system provides a solution for off-chain parties that look for a flexible and dis-
tributed access control service, compatible with their authentication service. Our solution
can be easily integrated with any off-chain system, while access control functionality is
achieved through blockchain and smart contracts.

Smart contracts correspond to logic encoded in the blockchain that can be programmed
and deployed as an automation program. Accordingly, smart contracts can create complex
transactions and enforce their conditions automatically [48]. Chaincode is a term introduced
by Hyperledger Fabric for smart contracts. Chaincode may consist of multiple smart con-
tracts or include only one smart contract. Both terms—chaincode and smart contract—are
used in this work interchangeably.

Before the development of smart contracts, blockchain applications were limited in creat-
ing cryptocurrencies and simple monetary transactions. The development of smart contracts
provided the infrastructure for creating more diverse blockchain-based applications, such as
healthcare [5, 13, 29], Internet of Things (IoT) [27, 37], resource sharing [55, 64], justice [6,
8] and business process management [31, 44, 57]. In a previous work [47], we discussed that
although the applications of these systems are different, their primary purpose is similar, as
they aim to control access over particular data. The data domain is their main difference, for
example, a patient healthcare data or data generated by IoT devices.

2.2 Access control models and ABAC

Access control refers to any action to prevent data and resources from unauthorized access,
disclosure or modification. In traditional databases, an authorization is described by a triplet
< o, s, p > defining that subject s is authorized to execute privilege p on object o [11].

Conventional access control models follow such definition, considering the context in
which an access control request is performed, i.e., a) Discretionary Access Control (DAC)
[12], b) Mandatory Access Control (MAC) [10] , and later ¢) Role-Based Access Control
(RBAC) [18] that are the three initial access control models [50].

DAC restricts access permissions based on the subjects’ identity, and the resource owner
defines the policy rules.

In MAC, the system defines access policies through the security labels. This model is
typically used for controlling access to sensitive and confidential data.

In RBAC, there are predefined roles in the system, and users have different access levels
depending on their roles.

ABAC is a logical access control that comprises access control lists, role-based access
control, and its own method for providing access based on the evaluation of attributes [24].
ABAC controls access to the system resources by evaluating policies (system rules) against
entities’ attributes, including subject, object, and environmental attributes. Attributes are
characteristics of the subjects (users) and protected objects (resources). The environment
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conditions—as the environment’s attributes—can also be taken into account for ABAC
decision making.

ABAC is a flexible and fine-grained mechanism capable of enforcing the other three
methods. Distributed systems also adopted ABAC as they require federation and auton-
omy control among coordinated systems, and ABAC enables granular and meta attribute
capabilities that support privilege delegation in a distributed application [25]. Likewise,
blockchain-based applications mostly adopt ABAC [47].

The eXtensible Access Control Markup Language (XACML) [3] introduces a policy-
based architecture for the specification and enforcement of access control policies. The
architecture comprises the following components.

—  Client: the device that requests access to a resource, possibly on behalf of a user;

—  Policy Enforcement Point (PEP): the network device on which access decisions are
carried out. PEP serves as the gatekeeper to the intended resource;

—  Policy Information Point (PIP): the repository that holds information (attributes) about
the client and provides this information to the PDP;

—  Policy Decision Point (PDP): the component that decides to allow or deny the client
access to the resource;

—  Policy Administration Point (PAP): the component that is responsible for managing
access control policies;

—  Accounting or Auditing: The component that is responsible for tracking access attempts.

Figure 2 illustrates how these components interact with the client and with each other.
A client requests access permission, and PEP forwards the request to PDP. PDP queries
the related policy and attributes from PAP and PIP. After receiving the required informa-
tion, PDP assesses the access decision and sends the result to PEP for enforcing the access
decision.

3 Related work

Many studies on blockchain technology focus on presenting an access control system, either
in the context of specific applications, such as healthcare [5, 13, 45, 46, 58, 61], IoT [14,
15, 33, 38, 39, 43, 63], and cloud federation [2, 17] or they introduce a general access

PEP
Enforces policies
Client
\/
PAP P PDP _— PIP
Managing policies Make Decisions Attributes information

Y

Accountability
Monitor activities

Figure2 ABAC logical components based on Policy based architecture [3]
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control system, which can be employed for different applications. In a previous study [47],
we have investigated the state of the art of access control systems based on blockchain. This
section provides an overview of similar studies, namely the ones presenting an attribute-
based access control based on blockchain. As illustrated in Table 1, many studies use the
attributed-based method for their access control system due to the granularity, flexibility,
and dynamic features that ABAC provides.

Guo et al. [20] introduce a hybrid architecture for access control over Electronic Health
Record (EHR) data using blockchain and edge nodes. The blockchain acts as a tamper-proof
validation component to verify identities and access control policies. The edge nodes store
the EHR data off-chain and enforce the access controls. The smart contracts include the
address of EHR data on the edge nodes by using one-time self-destructing URLs 3. Based
on performance results against unauthorized retrieval for the average transaction, processing
time was 40 ms, and the average response time was 30 ms. Also, the test result based on
a high number of patients does not affect the response time and indicates their solution’s
scalability.

Zyskind et al. [66] conceptualizes the blockchain technology as an access control moder-
ator, complemented by an off-blockchain storage solution. Blockchain clients representing
users, who provide their data to a service provider, are the owners of their data. Based on
that premise, their solution is meant to empower users, so they have the information on
which data is collected about them by third parties and how their data is used. For achieving
that goal, each data owner can issue transactions to change the set of permissions granted to
a service or entity. Each transaction is recorded on the blockchain, allowing for auditability
and traceability.

Zhang et al. [63] propose a solution directed to IoT blockchain-based access control.
The authors introduce the concepts of Judge Contract (JC), Register Contract (RC) and
Access Control Contracts (ACC). Access control contracts store access control policies for
a subject-object pair. In this system, both JC and RC are essential pieces regarding achiev-
ing a distributed and reliable access control. The JC receives misbehaviour reports and
applies penalties according to them. The RC stores the misbehaviour information from the
JC and manages it through the judging method. Moreover, it stores information such as
name, subject, object, and smart contract for access control.

Zhu et al. [65] propose a transaction based access control (TBAC) system that integrates
the ABAC model into the bitcoin blockchain. There are four implemented transactions,
including subject registration, object escrowing and publication, access request and grant.
They also present a cryptosystem associated with their system as an additional security
layer. The system is evaluated in terms of security, but its performance and scalability are
not examined.

In federated cloud services, access control enforcement is still vulnerable to privacy
violations.

Alansari et al. [2] present an attribute-based access control system based on Peder-
sen commitment scheme [42] and blockchain. The system is designed to keep the users’
attributes private from the federated organization. Users’ identity attributes and access con-
trol policies are stored in the blockchain to guarantee their integrity. They also employed
Trusted hardware technology to guarantee the integrity of the policy enforcement process.

Zhang and Posland [61] propose an architecture for granular access authorization that
supports flexible queries and secure authorization, at different levels of granularity. The

3https://1ty.me/
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designed architecture offers a robust infrastructure without requiring the public key infras-
tructure (PKI), so it decreases the computation time needed, and is suitable for devices with
limited resources in Electronic Medical Record (EMR) systems. As a result, their system
can efficiently respond to a requester without exposing unauthorized private data.

Maesa et al. [34, 35] implemented an access control service on top of Ethereum #. The
blockchain is used to store smart contracts that represent access control policies represented
in XACML [3] and to perform the decision process. Such smart contracts are called Smart
Policys (SPys), responsible for the policy evaluation process, by embedding a PDP for a
specific access control policy. Each time, an access request needs to be evaluated to make
an access decision, the blockchain executes it in a distributed way. The decision is made
based on information concerning the users. For this purpose, the concept of Attribute Man-
ager (AM) is introduced. AM; are the components that manage the attributes of the entities
involved in the process, such as subjects, resources, and environmental context. AM; can
update and retrieve their values and are created by an entity, the Attribute Provider (AP)
(Figure 3).

Maesa et al. studies in [34, 35] are the closest to our research work. Multiple advantages
come from the permissioned nature and novel transnational flow in Hyperledger Fabric.
Implementations based on the Ethereum blockchain is costly since, for every operation, a
fee called “gas” must be paid. Although it is generally unavoidable for public blockchain
systems, for permissioned implementations, it represents an unnecessary additional cost
imposed on the system.

Hyperledger Fabric introduces a novel execute-order-validate [4] architecture for trans-
actional flows. This enables modularity and pluggability, parallel execution of transactions,
and policy-based endorsement. As a result, Fabric provides more efficiency, customiz-
able configuration, and optimized resource usage based on an application requirement. By
exploiting Fabric’s modularity, we have evaluated our solution based on different consensus
mechanisms, such as Raft and Kafka, various databases, such as GoLevelDb and CouchDB,
and customizable network configuration. In comparison, Maesa et al.’s studies [34, 35] are
examined through “proof of work” consensus mechanism and Ethereum’s default database.

The privacy and security of the data generated by IoT devices are the major concerns of
the IoT system due to the extensive scale and distributed nature of IoT networks. In order
to protect the users’ privacy, many studies have considered blockchain in order to provide
secure access control to the [oT data. The authors in [14, 15, 43] presented an ABAC for
IoT systems. Dukkipati et al. solutions [15] store system policies off-chain while the work
in [43] stores the policies on the Ethereum platform is less vulnerable to security breaches,
but more costly. Ding et al. in [14] focus on simplifying the access control protocol to make
it lightweight and suitable for IoT devices with limited computing capability and energy
resources.

Zhang and Posland in [62] present an architecture for a blockchain-based EMR access
with granularity control that supports flexible data queries. The user layer first sends a query
that could have different granularity levels, such as block query, attribute query, or mixed
query. The agent layer aggregates the query data and authorizes the user, who has access
permission for that query. If it is a valid query, it passes the query to the storage layer which
would then return the data to the agent layer, that encrypts the query and sends it to the user
layer. Lastly, the query is decrypted using the provided access keys. The represented archi-
tecture offers a flexible infrastructure to achieve granular access control without requiring
Public Key Infrastructure (PKI), so it leads to a decrease in computation time processing.

4www.ethereum.org
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Figure 3 Blockchain-based access control service architecture [34]

Belchior et al. [7] propose an access control system rooted in the self-sovereign identity
paradigm. In this scheme, the parties have a decentralized identifier [53] (DID, representing
identity) and verifiable credentials [51] (VC, representing attributes). A party controls its
VCs and DIDs because they are rooted on a blockchain, and they hold the private keys
corresponding to the DIDs and VCs. Access control requests are translated to verifiable
presentation requests [51], that leverage ZKP [19] and allow a party to know the other in
respect to a certain access control policy, but without disclaiming additional information.
Some other works explore this thematic but do not propose an access control model on top
of it [22, 28, 54].

As reviewed, many studies have investigated blockchain as a back-end infrastructure for
the distributed access control system. However, most of the prior works in this area are
domain-specific, meaning that, their access control solutions are designed for a particular
domain, such as healthcare data or IoT data. Besides, most of those studies lack the details
on their implementation and on performance analysis. As a result, it remains unclear if a
blockchain can be the basis for access management at a large scale.

4 System model and architecture

Centralized access control systems suffer from various problems such as [7]: a) the risk of
privacy leakage, and b) the risk of a single point of failure; c¢) interoperability issues; d)
unreliability of the access control system, and e) the presence of third parties.

An access control system can utilize blockchain technology to address these problems.
The decentralized nature of the blockchain resolves the problem of a single point of failure
as, i) cryptography methods ensure the reliability of the ledger; ii) consensus mechanisms
ensure that the state of the ledger is valid, and that it is the same for every participant; iii)
smart contracts allow monitoring and enforcement of sophisticated access control decisions;
iv) with automatic enforcement, it can address privacy issues v) with automatic enforcement
of smart contracts, a system does not require third parties in order to manage access control,
and vi) privacy is enhanced by avoiding exposing data to third parties, which is a critical
data breach source.
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This solution empowers both resource owners and subjects (typically access requesters).
Details of each granted or revoked access permission are queried from the ledger, including
the policies that have been applied, the attribute values and the time of access request. In
practice, under no circumstances should resource owners deny access to a resource by a
rightful requester. On the other hand, the resource owners leverage provided audit trails
while ensuring that no user had subverted the system.

To provide a solution to these problems, we used the Hyperledger Fabric blockchain.
In the blockchain network, it is essential to have at least two endorsing nodes to establish
credibility. These nodes are responsible for executing SP;. In our solution, Clients would be
systems that use this system for access control management, as depicted in Figure 4.

Record [N Record policy (N PDP function (A
attributes function (tx) (tx)
function (tx)
ChainCode
component
Ordering O ChainCode -O
service API
Channel &8 Peer O Sl edae
'y
(A}
1!
/
SDK -O

\\_’,

-

client

Figure 4 High level system architecture using the Archimate modeling language [52]
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The workflow of the users remains unaltered. The only difference is that the authorization
requests are now mediated through one or more nodes representing the given system. The
evaluation of access control policies could be not trusted for the request’s subject, who may
request unauthorized access to resources.

4.1 System architecture

In the presented solution, as depicted in Figure 5, the blockchain acts as a mediator between
the entity that requests access to a specific resource and the entity that manages that
resource. The system includes two main components. The first component is an off-chain
system that relies on permissioned blockchain to store its access control attributes and
query access permissions. The second component is a permissioned blockchain that man-
ages different access control components through smart contracts and stores the data on a
tamper-proof ledger.

The three main smart contracts are PIP contract, PAP smart contract and the PDP
contract. Subject (user) and resource (object) attributes are stored in a JavaScript Object
Notation (JSON) data format through the PIP contract. The PIP is also responsible for
checking write conflicts and updating attributes. Policies are also recorded in the system as
JSON data format, and the PAP contract is responsible for managing policies and updat-
ing policies. The system could be implemented to work with multiple PAPs, each of which
run by a different organization. Even if there is only one PAP, the transparency offered by
this solution distributes the trust and the responsibility of these access policies. Conflict
detection and resolution among policies is out of the scope of this paper. PDP contract evalu-
ates policies to make an access decision. Figure 6 shows the architecture of the implemented
smart contracts.

The pseudocodes of transactions implemented in smart contracts are presented in Algo-
rithms 1, 2, 3 and 4. Algorithm 1 shows how the list of resources and subjects attributes
are stored in the ledger. Algorithm 2 presents how policies are recorded in the ledger. Algo-
rithm 3 explains how to query policies and the history of changes to the policies from
the ledger. Algorithm 4 shows the detailed implementation of the PDP transaction, which
includes querying the relevant attributes and policies from the ledger and making a decision
based on their values.

Hyperledger Fabric

ChainCode \

PDP smart contract
(Policy Decision Point)

Off-chain organization

PAP smart contract (Policy —Install—>|
Administration Point)

PIP smart contract (Policy
Information Point)

—Request for storing attributes™>| AM smart contract
(Attribute Manager)

Policy i
Enforcement «—Ask for access permissions__|

DOm € ——Query attributes and policies
—
Store attributes and policies
Block Block Block
n n+1 e -
\ Hyperledger Fabric Ledger J

Figure 5 Blockchain access control system architecture
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Off-chain application Blockchain

Policy Information Point (PIP)

Store attributes (subject Smart Contract
or object) Invoke UpdateAttribute Smart
If (AttributeKey is exist) ——————> Contract
Else
Record Attribute;

Policy Administration Point (PAF;)*

Store policies (subject Smart Contract
or object) Invoke UpdatePolicy Smart
If (PolicyKey is exist) ——————> Contract
Else
Record policy;

Policy Decision Point (PDP)
Request Access ) Smart Contract
permission Read UserAttribute, ResourceAttribute, Policy, and Rule from ledger;
Create ABAC instance based on policy;
Check access permission based on ABAC instance and attributes;

Figure 6 Smart contracts architecture

Algorithm 1 Record attributes transaction.
Input: attributeKey, attributes (subject or resource attributes)
Result: add attributes on the ledger
1 attributeKey (subject or resource key) <— getState(attributeKey)
2 if subjectKey then
3 throw error ‘attributekey’ is already exist you can update the attributes using
Update transaction
4 end
s putState(attributeKey, attributes)

Algorithm 2 Record polices transaction.

Input: policyKey, policy
Result: add policies on the ledger
1 policy <« getState(policyKey)
2 if policyKey then
3 throw error ‘policyKey’ is already exist you can update the policy using
UpdatePolicy transaction
4 end
5 putState(policyKey, policy)
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Algorithm 3 Query and trace policies.

Input: policyKey
Result: query policies info
policyBytes <— getState(policyKey)
if /policyBytes then
| throw error ‘policyKey’ does not exist
end
policy <— JSON(policyBytes)
resultsIterator <— getHistoryForKey(policyKey)
policyHistory <« allResults(resultsIterator)

N A W N -

Algorithm 4 Policy Decision Point (PDP) transaction.

Input: subjectKey, resourceKey, policyKey, rule
Result: permit
subjectBytes <— getState(subjectKey)
resourceBytes < getState(subjectKey)
policyBytes <— getState(subjectKey)
subjectAttributes <— JSON(subjectBytes)
if /subjectBytes OR subjectBytes.length == 0 then
| throw error subject’s attributes does not exist
end
resourceAttributes <— JSON(resourceBytes)
if /resourceBytes OR resourceBytes.length == 0 then
| throw error resource’s attributes does not exist
end
policy <— JSON(policyBytes)
if /policyBytes OR policyBytes.length == 0 then
| throw error policy does not exist
end
ABAC = Abac(policy);
permit = ABAC.enforce(rule, subjectAttributes, resourceAttributes)

RIS - Y N L

T <
N N R W N =D

After smart contracts evaluate SP; against their respective attributes, the PDP returns its
decision to the PEP. This process allows a decoupling between users and the blockchain
administration (as users do not need to have a node on the blockchain, which is desirable).

Our solution not only logs all access requests in a very secure way but also provides
a framework to control and manage all access controls concerning the participants in the
network. Nodes from the private network can access the blockchain, check transactions’
history, and audit the history of access requests and results. Automatic auditing techniques
can be further developed by analyzing the history of access request transactions.

A fine-grained access control solution is therefore provided that enforces access valida-
tion through blockchain-based service providers.

5 Case study

A digital library is a collection of documents in an organized electronic form that allows
users to access them online. A highly dynamic user population and the numerous collection
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of resources in digital libraries require a fine-grained and dynamic access control method
such as ABAC [1]. Such a solution requires that access policies be specified based on users’
attributes and characteristics rather than users’ roles in the system.

In this section, we have selected a case study for an implementation of access control in
digital libraries, to illustrate and explain the application of our ABAC system.

For every subject, we store it with a subject ID (SID) together with the set of its attributes
and values, and the same is done for Objects attributes. Attribute ID is a required field to
store attributes in the Hyperledger Fabric database, in order to later retrieve the respective
attribute for permission decision. Both Hyperledger Fabric supported databases (CouchDB
and LevelDB) are key-value stores, and the ID field is used as key.

Sp A corresponds to the set of attributes associated with the subject, and S,ID is
defined as a key for storing the correlated attributes. Similarly, O, A corresponds to the
set of attributes associated with the object, and O, ID is defined as a key for storing the
correlated attributes.

P,SA and P,0A are the sets of determinative attributes in the nth policy of subjects
and Objects. Same as attributes, Policy ID (P, I D) is a required field to store attributes. For
every policy, we store the determinative attributes (P, SA, P, O A) along with the policy’s
rules.

SpnA = {SpID, {{S, A1, value}, ..., {Sy A, value}}}
0,A ={0,ID,{{0, A1, value}, ..., {0, A,, value}}}
Defining SA as the set of all Subjects’ attributes and O A as the set of all Objects’
attributes, we have:
SA=(S1AUSAU..S,A)
OA =(01AU 02AU ..0,A)
P,SA C SA
P,OA C OA
P,SA, P,OA € P
P, ={P,ID, P,SA, P,OA,rules}

The resulting attributes for the Subject S1A and Object O1A are consequently (as

example):
S1A = {*s001”, {“status”, true},
{“expiration”, “2020 — 05 — 12}, {“libraryGroup”, 12}}

01A = {*r001”, {“libraryGroup”, 12}}
The policy P; with the identifier “policy01” becomes as follows (as example):

Py ={“policy01”, S1 A, O1A,
{“status == true” A “expiration” > “1Day” A

, “user.libraryGroup” == “resource.libraryGroup’}}
5.1 JSON data format

In our implemented solution, the access control data (attributes and policies) follow the
JSON format, as it is a widespread data format that a broad range of applications can use.
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An example of a policy, including Subject (user) attributes and Object (resource)
attributes, is illustrated in the following JSON code snippet.

Based on the presented example policy, for the the user (Subject) and the resource
(Object) attributes, our usert has valid access permissions to the resource, as the user has
valid Identifier (ID), active status, non-expired membership and the user library group
matches with the resource library group. If one of the Subject’s attributes does not pass the
policy rules, the access permission will be denied.

Example: Definition of a sample Access Control Policy, Subject and Resource followed by the JSON format

policy = {
‘‘policyID *’: “‘policy0Ol’’,
attributes : {
“fuser 7 |
‘‘status ’’: ‘“Active’’,
‘‘expiration’’: ‘‘Date of expiration’’,
‘‘libraryGroup *’: °‘Group ID’’
o
‘‘resource ’’: {
‘‘libraryGroup *’: °‘Group ID’’
}
1
“‘rules ’’: {
‘‘user.status ’’: {
‘‘comparison_type’’: ‘‘boolean’’,
‘‘comparison ’’: ‘‘boolAnd’’,
‘‘value’’: true
1
‘‘user.expiration’’: {

LI 5

‘‘datetime s

55

‘‘isMoreRecentThan ’’ ,

‘‘comparison_type
‘‘comparison ’’:

“‘value’’: ‘‘IDAY’’
1
‘‘user.libraryGroup *’: {
‘‘comparison_target ’’: ‘‘libraryGroup ’’,
‘‘comparison_type ’’ ‘‘numeric’’,
‘‘comparison ’’: ‘‘isStrictlyEqual ’’,
‘“field ’’: ‘‘resource .libraryGroup *’

}
}

}

subject = {
subjectID: “‘s001°’,
attributes : {

‘‘status ’’: true,
‘‘expiration’’: ‘2020-05-12"",
‘‘libraryGroup *’: 12
}
}
resource = f{

resourcelD : “‘r001°",
Attributes : {

‘‘libraryGroup *’: 12
1
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6 System evaluation

In this section, we evaluate the performance of the system. We used Hyperledger Caliper
to generate workloads and measure the performance of our system. For that purpose, our
own written benchmark was defined, as well as the various configurations for the different
components and network infrastructure, described as follows.

6.1 Environment configuration, performance parameters, and assumptions

We evaluate every component of our system against two different databases, Couchdb and
Goleveldb, and two orderer services, Raft and Kafka. We also present the evaluation results
based on the Solo orderer to illustrate the effect of other parameters separated from the
effect of the involved consensus method.

Raft is a crash fault-tolerant (CFT) ordering service based on the implementation of Raft
protocol. Raft follows the “leader and follower” model. The leader makes decisions, and the
followers follow the leader. The peer that represents the leader is changed frequently. Every
follower has the chance to be a candidate to become the leader of the next round.

Like Raft, Kafka is a CFT ordering service, which follows the “leader and follower”
model. However, Kafka uses ZooKeeper® to manage clusters. Zookeeper keeps track of the
status of the Kafka cluster nodes and partitions.

Solo is an implementation of a single ordering node, and it is not fault-tolerant. It is
meant to be used for testing purposes.

We used the Google Cloud Platform to run a Virtual Machine (VM) instance, in order to
test our application and collect performance analysis data. The machine type is n2-highcpu-
8, which includes eight virtual CPUs and 8GB of memory. All the tests are run on the same
virtual machine, as Caliper emulates workload distribution between several clients.

The default number of blockchain clients is 10 (each client emulated by a different
NodeJS® process). The default number of transactions is 5,000. The default database for
Raft and Kafka is GoLevelDB. The default number of organizations is two, and the default
number of peers is one.

6.2 Network topology

Hyperledger Fabric offers a distributed infrastructure that allows multiple organizations to
interact. The concept of “channel” has been introduced in order to separate the communica-
tion between organizations and to provide private data. Each organization can join multiple
channels and establish private communication resulting in a separate ledger for each chan-
nel. Each organization can contribute with multiple peers, and these peers are responsible
for maintaining a copy of the ledger and executing smart contracts. Smart contracts are
installed on peers and then defined on the respective channel. The Ordering service con-
sists of multiple nodes—called orderer—responsible for reaching deterministic consensus
(unlike public platforms such as Ethereum and Bitcoin with the possibility of a fork) and
ordering the transactions and bundle them into blocks. The Endorsement policy, which
the involved organization agrees, defines which organization’s peers must endorse which
transaction to be confirmed.

Shttps://zookeeper.apache.org/
Ohttps://nodejs.org/en/
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Figure 7 illustrates an example of a Hyperledger Fabric network.

For our use case, it is assumed that we have three organizations offering digital library
services. Library A and Library B are interested in offering an integrated service to their
users, and the service is limited to their registered users. The first step is defining a consor-
tium and storing it in the network configuration. Channel 1 will then be created based on
the network configuration. Each organization (library) contributes one peer to the channel
(there would be more peers in a real-world implementation to increase network reliabil-
ity). In the next step, the chaincodes responsible for implementing the ABAC system will
be installed on both peers and defined on Channel 1. The data stored on the ledger will be
only accessible to the members of Channel 1. It is also possible to restrict the users’ access
level through Fabric membership service and implement more granular access at the Fabric
network level. So far, this reflects the network topology for our implemented application.
It includes two organizations (orgl and org2) connecting through Channel 1, two peers
(peer0.orgl and peer0.org2).

We have tested our application through two different indorsing services. Raft ordering
service was established through three orderer nodes (ordered 0, orderer 1, orderer 2). Raft
is a CFT that can withstand one failure out of three nodes. Kafka is established through two
orderer nodes (orderer O and orderer 1).

As an extension to this scenario, we consider that Library B is also interested in integrat-
ing another service with a new organization (Library C). To implement the ABAC access
control, it is required to store the related attributes and policies on the ledger. Therefore,
they can establish a new channel (Channel 2) and maintain a separated ledger on their peers.
The data stored on the new ledger is not exposed to Library A. Library B can either use the
same peer (Peer B) for both channels or provide two separate peers to contribute separately
in Channel 1 and Channel 2.

Library A Library B Library C
Ordering
service
Channel 1 Channel 2 )
Peer A / Peer B \ PeerC
H 7——7“—-7\ ! |Chaincode x N Wen ol i | Chaincode y
] Ledger 1 |- S - Alncodo X
. ’ H Ledger 1 |
L
1 Ledger 2 j

Figure 7 Network topology
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6.3 Performance evaluation results

Figure 8 shows the average latency (in seconds) for three different transactions, Record
attributes and policies, PDP, and Query data from the ledger based on Kafka orderer. The
Record transaction includes storing both subjects and objects resources attributes, and poli-
cies; there are three transactions, Record objects’ attributes, Record subjects’ attributes and
Record policies. Since these three transactions basically do the same task, their extracted
results were very similar. The average latency of these three transactions is considered for
Record. The Query performs queries to the stored data in the ledger, including attributes and
policies. The PDP queries the related data from the ledger based on the access request and
determines the result of the access request. In every round of the test, we configured it with
a different number of transactions. Although the average latency increases with the num-
ber of transactions, the increase is not sharp, increasing very slowly. Analyzing the results
from the tests (described in the following) indicates that the system was able to process with
a throughput of around 270 transactions per second (PDP decisions) and with an average
latency of 0.54 seconds.

Figure 9 shows the average latency (in seconds) for the same three different transactions,
based on the Raft orderer. The test result is based on a different number of transactions.
Similarly, the average latency increases with the increase in the number of transactions. The
test run failed for the Raft orderer when reaching 10,000 transactions due to an “out of mem-
ory” error. This happened due to the limited memory resources of the testing environment.
The resource consumption result (Table 2) indicates that Raft consumes 4.33 times more
memory in comparison with Kafka. This fact explains why the test failed in the middle of
executing 10,000 transactions with the Raft orderer.

s Record
0.5 - B==m PDP

0.4

0.2 H

0.1

Kafka Average latency (second)

1000 3000 5000 10000
Number of Transactions

Figure 8 Average latency of Kafka as a function of the type of transactions
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Figure 9 Average latency of Raft under different transactions

For both Raft and Kafka orderers, increasing the number of transactions increases the
average latency for the Record attributes transaction. Policy decision transaction has the
minimum average latency for both Kafka and Raft, based on 3,000 transactions. For Record
attribute and Query data transactions, the average latency with Raft is slightly higher than
with Kafka. For the Policy decision transaction, the average latency with Raft for 1,000 and
3,000 transactions is slightly lower than with Kafka’s, but for 5,000 transactions, the result
is the opposite.

Figures 10 and 11 show the average latency and throughput for the Policy decision trans-
action for Raft and Kafka based on different sending rates. The number of transactions for
these two tests is 5,000. The dendrite of 200 transactions per second (tps) is an optimal point
for Kafka as it exhibits the lowest average latency, and the average latency increases sharply
after the sending rate of 200 tps.

The maximum throughput for both Raft and Kafka orderers is at the sending rate point of
300 tps; afterwards, the throughput drops for both of them. Overall, in terms of throughput
and average latency, Raft performed better than Kafka when the throughput passed 200 tps,
a turning point for Kafka.

Figure 12 shows the effect of increasing the number of organizations and peers and
comparing two different databases, GoLevelDB and CouchDB. Increasing the number of
organizations and peers increases the average latency for all three transactions. For the
CouchDB database with three organizations and two peers, the average latency increases
sharply to 43.81 seconds for the Policy decision transaction, which is 17.73 times more than
GolevelDB and 64.42 times more than the same database, with two organizations and one
peer. It also shows that CouchDB performs inadequately in comparison with GoLevelDB.

Figure 13 shows the average latency for both Raft and Kafka based on the different
number of clients. This test is run based on 5,000 transactions and the Policy decision trans-
action. For Kafka, 25 is likely the optimal point for the number of clients, for which we
observed the lowest average latency (0.3 seconds). However, 25 is an optimal point for the
system with the current resources. As the graph shows, for Raft, there are two points for the
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Figure 10 Average latency of Raft and Kafka based on different transactions

minimum average latency, corresponding to 20 and 25 clients. In general, Kafka performs
better under 25 clients, but after 25 clients, it shows a sharp increase in the average latency.
Although these results appear to show that the system does not scale beyond 25 clients, it
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Figure 11 Throughput of Raft and Kafka under different transactions
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Figure 12 Throughput of Raft and Kafka under different transactions. Legend: xOnP = x Organizations and
n Peers; gdb = GoLevelDB; cdb = CouchDB

significantly depends on the computation power and limitations of the VM instance. We
have repeated the test with a more powerful VM instance, and the average latency was 0.36
second for Raft and 0.31 second for Kafka, with 60 clients.
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Figure 13 Average latency based of Raft and Kafka with different number of clients
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Table 2 presents the resource consumption for Policy decision transactions based on
5,000 transactions for Kafka and Raft. As can be observed in that table, Raft consumes 4.33
times more memory on average in comparison with Kafka. This clarifies that our early test
with 10,000 transactions with Raft orderer failed because the VM ran out of memory.

6.4 Security considerations

Our system alleviates security and privacy concerns that centralized access control systems
suffer by offering a pluggable distributed application for access control that provides reli-
able auditing data for accountability and non-repudiation. However, there are additional
precautions that need to be taken. With our design, engineers are allowed to reuse our
access control component, which is decoupled from the underlying resources that are pro-
tected. While this openness provides ease of implementation, new concerns arise. We need
to ensure that there are no other ways to access protected resources. It is also essential to
ensure that the local world state database is not tampered with or accessed by the system
administrators. A possible solution to address those limitations includes enforcing only one
access control channel (the blockchain) and a secure, tamper-proof storage for logs (for
example, another blockchain) [8]. Although using blockchain to store resources increases
its resiliency, there are data integrity vulnerabilities [8]. Further research is needed to assess
the practical implications of such an approaches.

7 Conclusion

Reliable accountability mechanisms are essential for audits. In this paper, we discussed
how permissioned blockchains could be helpful as trustable backends in access control sys-
tems, thus providing a solid basis for audits. We proposed a distributed ABAC system based
on Hyperledger Fabric, focusing on audibility and scalability. We validated our solution
through a Use Case of a decentralized access control management application in digital
libraries. First, we presented a comprehensive review of studies focusing on blockchain-
based access control studies. Then we presented the system architecture and implementation
details, where the PDP, PAP, and AM components have been implemented using smart con-
tracts on-chain, and the PEP was implemented off-chain—based on the blockchain clients’
requirements.

The experimental evaluation of our solution considered various parameters based on
the Hyperledger Caliper framework in terms of system performance. The analysis of the
results indicate that our proof-of-concept system effectively handle a throughput of 270
transactions per second, with an average latency of 0.54 seconds per transaction.

Future work is in progress in two directions: first, building a robust framework and
platform-independent solution towards distributed access control while emphasizing data
integrity and privacy threats on distributed access control methods; second, integrating user
authentication into our authorization solution.
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