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Abstract—New applications and solutions are emerg-
ing as blockchain technology continues to prosper in
different industries. However, blockchain systems are
considered isolated silos, especially when it comes to
interoperability on systems putting restrictions on han-
dling private data. We propose ODAP-AS, a resilient
N-N cross-chain asset transfer protocol that enables the
execution of N transfers of assets in permissioned envi-
ronments, leveraging the concept of gateways. Gate-
ways act as the devices through which a blockchain
network can be accessed. We build our protocol on top
of the Open Digital Asset Protocol (ODAP), and its
crash recovery mechanism, ODAP-2PC, a crash fault-
tolerant protocol. ODAP-AS also defines how one gate-
way is replaced by a backup in case of a crash. We im-
plement a cross-chain asset transfer across Hyperledger
Fabric and Hyperledger Besu using Hyperledger Cac-
tus, which takes approximately 20 seconds. Addition-
ally, we can conduct a sequential execution of ODAP-
AS achieving 0.15 transactions/second throughput.

Indexr Terms—Interoperability, Cross-chain, Gate-
way, ODAP

I. INTRODUCTION

The concept of blockchain was popularized in 2008
as the technology behind Bitcoin, the world’s largest
decentralized digital currency by market capitalization
[25]. Since then, blockchains have grown in popularity,
opening up a new universe of possibilities, due to their
unique features such as security, anonymity, decentraliza-
tion, and immutability. Additionally, there have been a
lot of research efforts in industries like Energy, Finance,
Healthcare, and Government which makes the technology
more and more adopted [2], [6], [10]. Today, there is an
immense variety of public and private blockchains that
have their ideas and technology stacks according to the
use cases and goals they were designed to accomplish. As
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several studies [9], [13] point out, developers must choose
between originality and stability considering blockchain
implementations, which might lead to a vast amount
of solutions causing the fragmentation of the blockchain
industry.

Existing interoperability solutions range from the ne-
cessity of having intermediary entities that perform ex-
changes/transfers, such as notary schemes [13] (such
as Binance), to more decentralized protocols, such as
HTLCs [14], that don’t require a trusted third party to
ensure atomicity in a cross-chain transfer. Recently, atten-
tion has shifted to permissioned blockchains, managed by
consortiums of organizations, where nodes are identified,
like Hyperledger Fabric [4]. Although nodes need to be
authorized and authenticated to join the network, they
are not obligated to trust each other, having a governance
model that relents a certain degree of trust. This permis-
sioned concept is particularly useful to businesses, where
the application logic, internal transactions, and their data
might be confidential [3]. With these improvements, the
connectivity of private systems might be enhanced and
pave the way for new applications and use cases.

Under this scope, we find the Open Digital Asset Pro-
tocol (ODAP) [19] (currently under development in the
scope of the Internet Engineering Task Force, the IETF),
and its crash recovering draft, ODAP-2PC [5], which
leverages the concept of gateways and describes a new
protocol focused on making atomic unidirectional asset
transfers between two of them (the client gateway and
the server gateway). This gateway-based architecture is
built upon a comparison with the concept of Autonomous
Systems when the internet was born. At the time, the
solution proposed to scale up and interconnect these net-
works was to implement border gateway routers which



would provide an entry point to each one. We can think
about blockchains as networks and gateways as routers.
Gateways can therefore be thought of as (semi) trusted
relays between these blockchains and subsequently the
parties exchanging data [13].

As it is crucial of being capable of transferring assets
from party A to B, we should also focus on developing
new protocols that make possible the transfer of assets
to parties C and D, facilitating N-N transfers of assets.
Nevertheless, solely developing new protocols is not suf-
ficient. We, therefore, need to focus our attention on
improving the existing protocols, making them reliable
enough to cope with failures and still provide the required
guarantees, making it possible to build our new protocols
and features on top of the existing ones.

As a result, the focus of this paper is two-fold. We 1)
propose an enhancement to the primary-backup mode in
ODAP-2PC (increasing the resiliency of gateways); and 2)
propose ODAP-AS, a new protocol on top of ODAP and
ODAP-2PC, which enables the realization of atomic N-
N transfers of assets in permissioned environments (ver-
sus vanilla ODAP that only allows 1-1 transfers). More
specifically, ODAP-AS achieves multi-party transfers by
decoupling a list of transfers into a set of 1-1 ODAP
sessions.

The problem we are addressing can be translated into
“How to make N-N reliable and atomic transfers of assets
in permissioned environments?”.

Regarding the structure of this paper, section II in-
troduces the background knowledge on Blockchain Inter-
operability, the Open Digital Asset Protocol (ODAP),
and the respective crash recovery mechanism (ODAP-
2PC). Then, in section III, we present the solution that
enables us to perform N-N atomic cross-chain transfers
using gateways. Following, we lay out the contribution to
ODAP-2PC in section IV. Section VI and VII presents the
implementation and evaluation details, respectively. The
related work encompassing some protocols that perform
cross-chain transfers is then specified in section VIII. We
wrap up in Sections IX and X that include a plan for the
near future and a conclusion of our work.

II. BACKGROUND
A. Blockchain Interoperability

We can consider blockchain interoperability to be “the
ability of a source blockchain to change the state of a
target blockchain (or vice-versa), enabled by cross-chain
or cross-blockchain transactions, spanning across a com-
position of homogeneous and heterogeneous blockchain sys-
tems” [13]. In this definition, the authors distinguish cross-
chain and cross-blockchain transactions, but we use them
interchangeably in this paper. Ultimately, the main goal
of this area is to work on the interconnection of different
blockchain systems, regardless of their inner implemen-
tation. There can be different modes of operation which
is fundamental to support different use case scenarios:

asset transfers, asset exchanges, and data transfers [17).
Asset transfers are achieved by deleting one asset on
the source blockchain and its representation is created
in the target blockchain. Asset exchanges focus on the
transfer of ownership of one asset in each network so
that the asset (or the value it represents) never leaves
the relevant network. Lastly, data transfers are related to
wider concepts, intending to manage and exchange data
between networks rather than only assets. ODAP concerns
transfers of assets, thus, in this paper we will only focus
on this scenario.

B. ODAP

In the context of gateway-based blockchain interoper-
ability, the Open Digital Asset Protocol (ODAP) [19],
appears as the “first cross-chain communication protocol
handling multiple digital asset cross-border transactions by
leveraging asset profiles (the schema of an asset) and the
notion of gateways.” [12].

ODAP considers three access modes for clients to in-
teract with blockchains and their resources. In this paper,
our focus is on the Relay Mode, where a client instantiates
a gateway to gateway interaction. Considering A as the
client gateway, and B as the server gateway, then one
ODAP session is represented by A M B It is not the
scope of the protocol the way client applications interact
with each other beforehand. All communication is done
through a trusted communication channel using, for ex-
ample, TLS [24].

The protocol is divided into three phases/flows 1) Trans-
fer Initiation Flow, where gateways exchange the commu-
nication terms and rules, making verifications regarding
their identities and the asset that will be exchanged; 2)
Lock-FEvidence Verification flow, where the asset in ques-
tion is locked, and a piece of evidence is presented to the
other party; 3) Commitment Establishment Flow, in which
the involved gateways effectively commit the changes and
terminate the asset transfer. The commitment corresponds
to the deletion of the asset in the source blockchain, and
the creation of a representation in the target blockchain.

C. ODAP-2PC

ODAP lays the groundwork for communication between
gateways, but it does not provide fault tolerance on its
own. To address this problem, HERMES [12] proposed
ODAP-2PC, a crash recovery mechanism that allows any
party running ODAP to recover from a crash when ex-
changing messages, guaranteeing consistency across both
blockchains. This mechanism is based on the logs gen-
erated before and after each sent and received message.
Currently, these protocols are focused only on failures by
crashing and are not concerned with Byzantine behavior,
and it is proven the atomicity, consistency, durability, iso-
lation, auditability, and termination of this protocol [12].

According to the protocol, there are two possible pro-
cedures when a crash occurs, the self-healing mode and



the primary-backup mode. In the first one, we assume
the crashed gateway can recover and re-establish the
communication with the other party’s gateway. If the
crashed gateway is not able to recover within a bounded
time, a backup gateway takes control of the asset transfer.
The existing specification only mentions the necessity of
such procedures, not proposing any actual solution. We,
therefore, explore in section IV a solution to the problem.

There are two main procedures defined by the protocol:
1) Recovery Procedure: where the crashed gateway sends a
RECOVER message to the counterparty and retrieves the
latest logs so that it is possible to resume the execution; or
2) Rollback Procedure: where one gateway rolls-back after
a timeout from the other party. The Rollback is equivalent
to issuing transactions with a contrary effect to the ones
already issued [12].

ITI. AtoMic N-N CRross-CHAIN TRANSFERS USING
ODAP

We now present a solution to perform the execution
of N-N atomic cross-chain transfers in permissioned en-
vironments. Even though there are, in academia, some
solutions to the N-N problem, as of the date of writing
there is no protocol that leverages gateways to achieve the
same goal, with emphasis on permissioned environments.
As such, the objective is making transfers of assets between
N different blockchains, atomically, even in the presence of
crash failures during the execution of the protocol.

A. System Model

In the current context, an N-N atomic cross-chain trans-
fer is a set of asset transfers between N entities (repre-
sented by gateways) where atomicity is required even in
the presence of crash faults. For now, we assume only one
gateway per blockchain/entity and abstract the way how
they were chosen within its organizations to perform the
transfer with the other N-1 gateways. We assume gateways
fail by crash, i.e., don’t have arbitrary behavior, and G is
Gateway 1, G5 is Gateway 2, and so on. We also leverage
the concept of Virtual Asset Service Provider (VASP),
which is defined as the legal entity that owns one gateway
(taking advantage that in a permissioned environment
nodes have a known identity) [18].

For the sake of an example, let us consider 3 VASPs:
VASP1, VASP2, and VASP3, such that Gi, G, and Gs3
belong to VASP1; G5 and Gg belong to VASP2; Gy belongs
to VASP3 as depicted in Fig. 2).

B. Protocol Overview

The example we are studying consists of 3 gateways (G,
Gs and Gyp) and 3 asset transfers between them: G; — Gs,
Gs — Gio, and Gio — Gi.

A possible first approach to the problem consists of
starting 3 ODAP sessions for each transfer that will take
place. In the above example we would have G; =22 Gs,
Gs 222 Gio, and Gip =% G;. These different sessions
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Fig. 1. ODAP-AS execution. Gateway 1 is the coordinator for the
execution of multiple ODAP sessions between Gateways 1, 5, and 10.

are not coordinated with each other, thus, if there is a
rollback in one of them, the others will not have knowledge
of that, which would break atomicity. This forces the
different processes to have some kind of coordination, like
reporting back to a coordinator. In the aforementioned
example, if there is a rollback, then the coordinator would
be responsible for letting the other parties know that they
must rollback as well. In essence, what we are trying to
achieve is a coordination of the processes that assimilate
to a 2PC or 3PC. The solution proposed is ODAP-AS,
where the different sessions are synchronized by a 2PC
initiated by a coordinator, which is one of these gateways.
For now, we assume there is one gateway selected, but in
the future, we can have a leader election protocol between
all to decide the one with this role.

Figure 1 depicts one execution of ODAP-AS, where
G1 acts as the coordinator of three transfers of assets
between Gi, G5, and Gyg. The problem can be formulated

odap-as
as G1 — G1,Us,G10-

C. Protocol Description

The coordinator gateway (Gateway 1 in Figure 1) re-
ceives from a client application a set T of N transfers {77,
T3, T3y ---,Tn}, where T, ¥n € N, has the information
about the client gateway, the server gateway, and the
profile of the asset being exchanged.

After having all the necessary information to run the
transfers, the coordinator can communicate with the client
gateway for every ODAP session. This corresponds to
sending a message to every A, such that A 2= B. This
communication is done through the exchange of ODAP-
AS messages, which structure is specified in ITI-C.

Algorithm 1 depicts ODAP-AS. The coordinator starts
by sending an odap-prepare message to every gateway:
gl odap-prepare 91, 91 odap-prepare g57 91 odap-prepare 910
(step 1 in Figure 1). This first message includes the
necessary data for each gateway to start its corresponding
ODAP session with the corresponding server gateway
(step 2), just as a client does in a normal ODAP 1-1 in



the Relay Mode. Before committing, each client gateway
acknowledges the coordinator, which will gather a set of
odap-ack messages (step 3). If every gateway responds
positively, an odap-commit message is sent (step 4) and
each ODAP session can run the last phase, where the
“commits” occur — deletion and creation of the repre-
sentation of the asset (step 5). If one gateway that does
not respond to the first odap-prepare message in a defined
timeout, or responds negatively, an odap-rollback message
is sent (in detriment of the odap-commit message in step
4), aborting all transfers. In either condition, the protocol
is finalized when each client gateway sends an odap-done
message to the coordinator, which subsequently returns
to the client application. This last step can be omitted
depending on the consistency level required by the client
applications, since we ensure that eventually blockchains
will end up in a consistent state.

ODAP-AS Message Format

1) Version: ODAP-AS protocol version;

2) Message Type: each message has a specified
format (e.g., urn:ietf:odap-as:msgtype:odap-
prepare);

3) SessionID: unique identifier (UUIDv2) rep-
resenting a multi-party session;

4) ODAP-AS Phase: ODAP-AS phase (pre-
pare, ack, commit, rollback, done);

5) Sequence Number: increasing counter that
uniquely represents a message from a session;

6) Coordinator Gateway ID: the public key
of the coordinator;

7) Recipient Gateway ID: the public key of
the gateway interacting with the coordinator;

8) Asset Profile: Profile of the asset subject to
the transfer;

9) Payload: any necessary payload related to

the Message Type;

Message Hash: the cryptographic hash of

this message;

11) Signature: signature of this message;

Notice that this protocol is built upon ODAP and
ODAP-2PC, which means that the crash recovery mech-
anisms are still in place. If there is a crash in one exe-
cution of ODAP before committing, then the coordinator
will not send the odap-commit message until there is a
recovery from the crashed gateway, and after sending an
acknowledgment to the coordinator. In addition, in case of
a permanent crash of one gateway, the others will rollback
if a certain timeout is exceeded (agreed by all gateways
upon starting the execution).

D. Sequential vs Parallel transfers

Dealing with N transfers of assets can be done either in
parallel or sequentially. Ideally, one would run all transfers

Algorithm 1: ODAP-AS algorithm

Input: transfers list

Result: Successfully transfer of the assets between
the N parties

prepareResponses < [0..N];

foreach transfer tf €transfers list do
const prepareResponse =

tf.sender.makeODAPTransfer (tf);
prepareResponses|t f.sender.id] <+ true

wait() ; // wait for every response
for i < 0 to transfers listlength() — 1 do
if prepareResponses[i] # true then
foreach transfer tf €transfers list do
const rollbackResponse =
L tf.sender.rollbackODAPTransfer(tf);

wait() ;
return False;

// wait for every response

foreach transfer tf €transfers list do
const commitResponse =
tf.sender.commitODAPTransfer(tf);

wait() ;
return True;

// wait for every response

in parallel, which would represent a similar latency to
executing only one (assuming there is no hardware bot-
tleneck). However, this might not be possible, especially
in cases where the transfer of an asset depends on the
previous one. One could think about multiple use cases
where transfers have dependencies on each other and are
required to be made sequentially, while the whole set
of transfers is intended to be atomic. Naturally, in this
situation, the total latency would increase, as analyzed in
Section VII.

IV. GATEWAY REPLACEMENT PROCEDURE

HERMES leverages the concept of gateways from
ODAP and proposes ODAP-2PC, a crash fault-tolerant
protocol. In this protocol, it is assumed any gateway
recovers from crashes within a defined bound of time, but
what if it doesn’t? As proposed by the authors, we need
to have a primary-backup mode, where any gateway can
be replaced by a backup that can resume the protocol on
behalf of the first one. We propose an extension to the ex-
isting protocol, where the question we are trying to answer
is “How can a backup gateway build trust with the other
party’s gateway and resume the execution of the protocol?”.
We add a new assumption on top of HERMES [12] system
model, where each backup gateway is up-to-date with the
logs of the primary, either through the shared log storage
or, for example, through a publish-subscribe system.

As in the previous section, we consider VASP1, VASP2,
and VASP3, such that Gy, G2, and G3 belong to VASP1;
Gs and Gg belong to VASP2; Gig belongs to VASP3 (as
depicted in Fig. 2). Additionally, consider every other
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Fig. 2. Certificate Hierarchy where 2 CAs issue 3 VASP certificates,
which in turn, issue gateways certificates

gateway in each VASP a backup gateway for the others.
As an example, Gy and Gs are backup gateways for Gy
open sessions, or G; and G, are backup gateways for Gs
open sessions. We also assume each VASP has a certificate
issued by a globally trusted Certificate Authority, CA1 or
CA2.

A. Protocol Description

Let us assume G; and G5, from VASP1 and VASP2 re-
spectively, are running an ODAP session when G; crashes.
After a conservative period of time, both G, and G3 assume
the crash of Gy, and elect one to establish a connection
with G5 and resume the execution of the open session. If,
for example, Gs is the chosen backup gateway, how does Gs
know that Go has the authorization to replace the first one
(G1)? The solution proposed is based on Fig. 2 and three
validations conducted by G5 concerning the certificates of
the gateways:

1) Validate Go certificate validity by running a certifi-
cation path validation algorithm [15], which includes
validating all the intermediate certificates up to a
trusted root. In this case, G5 needs to recognize CA1
as a trusted certificate authority.

2) To ensure Go’s ability and permission to replace Gy,
G5 needs to verify if the parent certificate of both
Gateway 1 and 2 certificates is the same. In other
words, if both certificates were issued by VASP1,
which proves they belong to the same entity.

3) Verify if Gy’s certificate hash belongs to the list
specified in Gi’s certificate extensions [15], which
indicates a set of gateways that are eligible to be
the backup gateway in the case of a crash. This is
set by each VASP when issuing a certificate.

V. USkE CASE USING PROMISSORY NOTES

The applicability of our solution can be explained
through an example. We present a simple supply chain

\\ Producer 1 /}—X“G,,/ ;G‘"‘/k_‘:‘ Wholesaler 1

Promissory Note 1

Depend on one
another for
delivery of final
product

ODAP-AS coordinates both transfers

o am Promissory Note 2 o N e
\‘ Producer 2 )—‘;sz \Gwz/)(—( Wholesaler2 |

> Off-Chain communication ———> App communication ODAP session

Fig. 3. Alice, Bob, and Charlie engaging in a multiparty asset
transfer using ODAP-AS.

use case that could benefit from the implementation of
the protocol.

A promissory note can be defined as a promise “made
by one or more persons to another, engaging to pay a
certain sum of money subject to certain requirements as
to the promise” [21]. Replacement bills or notes issued
by central banks can be substituted and must be signed
by the promisor [27]. Recent advances in the financial
industry have focused on the digitalization of promissory
notes and their integration into blockchains, given that
paper promissory notes are hard to track and require
hand signatures [1], [11]. Furthermore, the concept of
promissory notes in the interoperability of the blockchain-
based on gateways was already proposed by [11], [12].

As we have been remarking through the document, the
gateway-based interoperability solutions suit the permis-
sion needs of every (or almost every) enterprise solution.
Gateways are identified entities within an organization
and comply with the existing regulations/legal frameworks
imposed by the organization’s home jurisdiction, making
them suitable for this use case. As [12] points out, using
these gateway-to-gateway protocols provides the building
blocks for inter-jurisdiction asset transfers.

We leverage the example provided by [11] and extend it
to realize an N-N atomic cross-jurisdiction asset transfer,
using ODAP-AS. The base example consists of two enti-
ties, a Producer (P) that sells goods to a Wholesaler (W).
P issues an invoice for value V to W, which should be paid
in a maximum of 90 days. Since P might not want to wait
90 days for the payment, it can request a promissory note
stating that W will pay V to P in 90 days. This promissory
note can now be sold by P to a third party so as to buy
any good.

Since promissory notes are valid for a given jurisdiction,
if a transfer needs to take place, gateways can facilitate it
while abiding by the regulations in place.

Given this base illustration retrieved from [11], we ex-
tend it to demonstrate ODAP-AS in a similar supply chain
example as depicted in Figure 3. Two wholesalers — W,
and Wy — form a consortium that, among other products
sold individually, sells products in partnership. W; and
W3 depend on the products sold by two producers — Py
and Ps — respectively.

When P; sells goods to W1, Py issues an invoice for



value V1, and requests a promissory note PN; stating the
debt. The same happens between P, and W, with respect
to a value V.

Given that W; and W5 depend on one another to sell
their final products, W; might not want to go in debt
(buying and issuing a PN; to P;) unless Py also sells
the necessary amount of goods to Wy. We can therefore
represent this problem as two independent asset transfers
that need to be performed atomically. The problem can
be formulated as a set of transfers — W; SN P;, and
Wo SN P, — that must be atomic, either are both
successful, or both failed.

If we consider Gp1 as P;’s client gateway, Gpo as Pay’s
client gateway, Gy, as Wi’s client gateway, and Gy
as Wy's client gateway we could leverage gateways and
ODAP-AS to perform the atomic asset transfers. The
problem can, therefore, be formulated as Gp; 2225
Gpr1,Gp2,Gw1,Gwa, if Gp1 is the coordinator.

We can conclude that ODAP-AS makes possible the
execution of multi-party cross-jurisdiction asset transfers.

VI. IMPLEMENTATION

Besides our theoretical work, we also contribute to the
open-source community by implementing ODAP, ODAP-
2PC, and ODAP-AS, as business logic plugins in Hy-
perledger Cactus [22]. The implementation of the ODAP
plugin in Cactus reaches approximately 30k lines of code
and was merged into the main branch of the project.

A. Hyperledger Cactus

Cactus is a project under the Hyperledger ecosystem. It
allows users to make an adaptable and secure integration
of different blockchains and provides a pluggable architec-
ture that enables the execution of ledger operations across
as many blockchains as needed. One major advantage
of using Cactus is that it is capable of handling the
integration of both private and public blockchains, which
integrates very well with the solutions proposed previously
in Sections III and IV. At the date of writing, the project
has nearly 1.5 million lines of code, 230 stars, and 172
forks on GitHub.

B. Architecture

We present the architecture of a single ODAP session in
Figure 4 (without the green flow, and directly connecting
the client app with the ODAP plugin). The client applica-
tions are the first entities involved in any transfer of assets.
This represents off-chain communication (not in the actual
blockchains), where both parties agree on the parameters
of the transfer, which is afterward communicated to the
respective gateways. In this implementation, each gateway
is represented by a business logic plugin (ODAP plugin)
that has multiple connections to different parties. The
first one is the local database. Each gateway has in its
server a local database to store the logs generated by
the execution of the ODAP protocol. Each ODAP plugin
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Fig. 4. Architecture of the ODAP plugin in Hyperledger Cactus with
ledger connectors (Hyperledger Fabric and Hyperledger Besu), IPFS
connectors, and local databases.

also has an IPFS connector to the same network, which
will be used to verify the integrity of the logs. Lastly,
there are the ledger connectors, which make possible the
interaction with the underlying blockchains in the form
of transactions (and subsequently, smart contract calls).
In this implementation, each gateway is connected to
a different blockchain connector, the source gateway to
Hyperledger Fabric and the target gateway to Hyperledger
Besu.

Now, moving forward to the N-N environment, we con-
sider the ODAP-AS plugin as the new entry point for client
application requests and the coordinator for the multi-
party transfer. This new plugin communicates with every
client gateway’s ODAP-AS plugin. In total, N ODAP
sessions will be initiated by making a direct request from
ODAP-AS to the internal ODAP plugin III.

VII. EVALUATION

This section evaluates the performance of ODAP-AS,
but also of ODAP and ODAP-2PC, following their imple-
mentation in Hyperledger Cactus.

A. Goals

The main question we are trying to answer is whether
the aforementioned protocols are indicated and provide
the necessary reliability to perform atomic cross-chain
transfers between N parties in a permissioned environ-
ment. Additionally, we summarize the goals and objectives
of this evaluation in the form of questions:

1) Q1: What is the impact of having a gateway crash

during one ODAP session?

2) Q2: What is the impact of having a rollback during
the one ODAP session?

3) Q3: How does the performance of N-N cross-chain
transfers in parallel vary with the number of trans-
fers?

4) Q4: How does the performance of N-N cross-chain
transfers in sequence vary with the number of trans-
fers?

B. Testing Environment

All tests were run in a Google Cloud Compute Engine
VM instance composed of 4 vCPUs, and 20 GB of memory,
having a Boot Disk mounted using an Ubuntu 18.04



image, and a 30 GB SSD. As previously mentioned in
Section VI, we took advantage of Hyperledger Fabric and
Hyperledger Besu connectors in Hyperledger Cactus, to
be the source and target blockchains, respectively. Hence,
for testing purposes, we utilized the respective all-in-one
Docker images available in Docker Hub.

C. Ezxperimental Results

Q1: The first query we are trying to address is the
impact of a crash in one ODAP session. To answer this
question, we ran ODAP until the end of phase 2 and
simulate the crash of the client gateway. We then bring
the client gateway back online and resume all open sessions
(only one in this case), before the defined rollback timeout.
The recovery procedure is triggered and eventually, the
state of both gateways ends up synchronized. The crash
recovery procedure, after the crashed gateway recovers,
takes only 0.50% of the total time of the protocol (not
counting the time the gateway was disconnected).

Q2: Now, let us take a look into the influence of rolling
back one ODAP session. In this execution, we simulate
the crash of the client gateway just after the creation
of the asset on the target blockchain, and we do not
recover the gateway until the timeout on the server-side
is exceeded (set for 5 seconds). By noticing this timeout,
the server gateway initiates the rollback procedure. When
the client gateway is back online and initiates the recovery
procedure, it learns the rollback done by the counterparty,
which will trigger its rollback. The rollback procedures
from both the client and server side, in addition to the
recovery procedure triggered by the client gateway, took
37.69% of the total time (this is the worst-case scenario).
We can ultimately conclude that the rollback procedure
is to be avoided as much as possible to the detriment of
the recovery procedure. In fact, if we guarantee a backup
gateway for each gateway running ODAP (as proposed in
Section IV), no rollback procedure shall ever be triggered.
This demonstrates the importance of having such a pro-
posal.

Q3: As previously mentioned in Section III-D, we can
consider two different constructs, one where the transfers
occur in parallel, and the other where one happens after
the other, sequentially. Considering N parallel transfers,
the total latency of the protocol will be similar to the exe-
cution of only one, unless the available physical resources
become the bottleneck by functioning at their maximum
rate. We can thus conclude there is no value in evaluating
N ODAP transfers in parallel since we would be testing
the infrastructure instead of the proposed protocols.

Q4: We move to the sequential setting. In Figure 5 we
can find the relation between the number of sequential
transfers and the total latency of the protocol. As we
can see from the graph, the latency is constantly rising,
following a linear trend. In addition to the latency, we
also measured the throughput of this execution. Since the
number of transactions in each ODAP session is constant

(lock, delete and create asset), and the latency of such exe-
cution is constant (given by the linear growth in Figure 5),
we would expect the throughput to be also constant. The
throughput is depicted in Figure 6.

We can observe, in both Figure 5 and 6, a small devia-
tion from our predictions. We believe one of the reasons for
this is the testing process, mainly being constantly writing
results to local files (I/O operations), or even the change of
configurations before each run (because the asset IDs need
to be changed so that different assets are locked, deleted
and re-created in the respective blockchains). We can thus
conclude that the results of our evaluation are alike what
we expected.
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Fig. 5. ODAP-AS latency given the number of sequential transfers

Throughput of N-N Sequential ODAP executions
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Fig. 6. ODAP-AS throughput given the number of sequential trans-
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VIII. RELATED WORK

HERMES [12] is a fault-tolerant trusted relay that con-
nects blockchain networks, based on ODAP and ODAP-
2PC. ODAP-AS, proposes enhancements to the latter,
increasing its reliability, and subsequently decreasing the
number of assumptions made.

Fyn et al. [16] propose Move, a protocol that enables
the transfer of smart contracts between blockchains built



on top of the EVM, by leveraging 2PC, however, it is only
focused on 1-1 interactions.

Luo et al. [20] suggest an inter-blockchain architecture
for routing management and transfer of messages between
blockchains, which is similar to our gateway architecture.
However, it requires a third-party blockchain, called router
blockchain. This is similar to AC3WN [29], which requires
a witness blockchain to enable the execution of atomic
swaps between N parties.

Polkadot [28] and Cosmos, enable the interconnection
of different chains (in the respective network) through the
Cross-Chain Message Passing Protocol (XCMP), or the
Inter-Blockchain Communication protocol (IBC), respec-
tively. XCMP enables the interoperation with more than
two heterogeneous blockchains, however, IBC can only
interoperate with up to two heterogeneous blockchains.
The way these systems are used as either one or the other
actually does not remove the existing blockchain fragmen-
tation. Instead of having blockchain fragmentation, we
have blockchain engines (or blockchains of blockchains)
fragmentation, which in fact leads to the same problem.

Wang et al. [26] also leverage 2PC to propose a new
distributed commit protocol for conducting transactions
across N blockchains, however, the safety and liveness
properties are not yet theoretically proved. If the coor-
dinator crashes, atomicity is only guaranteed through the
assumption that eventually a new coordinator is elected.
ODAP-AS guarantees atomicity through the primary-
backup mode, and if needed, by triggering the rollback
procedure in each ODAP session.

IX. BLOCKCHAIN VIEWS AS PROOFS FOR BLOCKCHAIN
INTEROPERABILITY

Blockchain is being used by organizations/consortia
that do not necessarily trust each other but need to
share some pieces of data, including private information.
As [7] points out, due to the private nature of some
blockchains, there can exist different views on the state
of the blockchain depending on the stakeholder (and the
respective authorization).

BUNGEE [8] is a view generator that captures snap-
shots from ledgers to build integrated views of the global
state of networks. In the gateway-based architecture, one
gateway might not be allowed to look at the internal
data of the other gateway’s blockchain. We can, therefore,
leverage the concept of blockchain views to allow one
gateway to verify the state of an asset (e.g., if it is locked or
not) in the other party’s blockchain, removing some trust
assumptions on gateways. To guarantee the truthiness of
these views, they should be signed by the view generator
instantiated in each gateway.

T-ODAP [23] presents a protocol on top of ODAP,
which enables a trustless transfer of assets between gate-
ways through a Decentralized View Storage, which con-
tains the views that were published in one or more net-
works.

X. CONCLUSION

At the moment, there is no solution for the multi-
party transfer problem in permissioned environments, so
this paper proposes a new protocol, ODAP-AS, based
on a 2PC to ensure coordination between the different
entities and ODAP sessions. In addition, we propose an
enhancement to the primary-backup mode in the existing
crash recovery procedure, ODAP-2PC. Since we base our
work on a 2PC, we might have an issue if the coordinator
gateway crashes shortly before transmitting the COMMIT
messages, however, if we consider a gateway can always
recover (through a primary or backup mode), we can be
confident in the protocol’s finality and atomicity. We, addi-
tionally, need to define the crash recovery procedure of the
proposed protocol, where it is not defined how a gateway
can reestablish the connection with the coordinator of the
global transfer in case of a crash. Subsequently, as a plan
for the near future, we intend to develop the crash recovery
mechanism for the new N-N atomic cross-chain transfers
protocol, and integrate the concept of blockchain views.
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