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Abstract—Ecosystems of multiple blockchains are now a
reality. Multi-chain applications and protocols are perceived
as necessary to enable scalability, privacy, and composability.
Despite being a promising emerging research area, we recently
have witnessed many attacks that have caused billions of dollars
in losses. Attacks against bridges that connect chains are at the
top of such attacks in terms of monetary cost, and no apparent
solution seems to emerge from the ongoing chaos.

In this paper, we present our contribution to minimizing bridge
attacks. In particular, we explore the concepts of cross-chain
transaction, cross-chain logic, and the cross-chain state as the
enablers of the cross-chain model. We propose Hephaestus,
the first cross-chain model generator that captures the op-
erational complexity of cross-chain applications. Hephaestus
can generate cross-chain models from local transactions on
different ledgers realizing arbitrary use cases and allowing
operators to monitor their cross-chain applications. Monitoring
helps identify outliers and malicious behavior, which can help
programmatically to stop bridge hacks and other attacks. We
conduct a detailed evaluation of our system, where we implement
a cross-chain bridge use case. Our experimental results show
that Hephaestuscan process 600 cross-chain transactions in
less than 5.5 seconds in an environment with two blockchains
and requires sublinear storage.

I. INTRODUCTION

Recently, many initiatives and projects have appeared
around the concept of blockchain interoperability (BI), where a
multi-chain ecosystem is perceived as the enabler for a scalable
and adaptable platform for various use cases [1]-[4]. To en-
able such an ecosystem, bespoke distributed ledger technology
(DLT) interoperability solutions, such as cross-chain bridges
(or simply bridges), are used to connect heterogeneous DLTs,
i.e., DLTs with different privacy, security, decentralization, and
scalability properties. Bridges are one of the most widely used
classes of cross-chain applications. The total value locked in
bridges peaked in March 2022 at over $25 billion dollars worth
of assets [5], effectively reflecting the synergistic effects of
free flow of capital, as now users can use their capital on
multple blockchains. As of June 2022, the total value locked is
still significant, as Figure 1 shows. With more than 40 bridging
projects as of September 2021 [6], the trend is for projects
to either mature by improving their security and usability or
to disappear.

Although BI has the potential to enhance the current user
experience in various dimensions, it does not come for free.
To study its trade-offs, by formalizing the interactions between
different systems (which we refer to as domains), we refer

TBlockdaemon Ltd.  fAccenture

to the concepts of cross-chain transaction (cctx), cross-chain
logic (or cross-chain rules), and cross-chain model (ccmodel).
These concepts are important for reasoning about multi-chain
applications: a cctx is a set of transactions abstracted into
a logical unit of work [7], or a single atomic transaction
[8]. A ccmodel is the set of rules that define conditions
for cctxs plus a state (cross-chain state). The set of cctxs
may follow a ccmodel, leading to valid cross-chain state,
or not. If transactions do not follow the specified rules the
ccmodel defines, the model is under-specified, or there is
“suspicious” behavior (e.g., malicious, such as an attack, or
non-malicious, such as a software bug). Effectively, a ccmodel
allows one to have a baseline of expected behavior to compare
ongoing cctxs with the baseline model. For instance, ccmodels
allow expressing complex cross-chain logic without having
the protocol designer focus on timeouts, missing or corrupted
information, and the technicalities of ad-hoc protocols. This
allows the designer to focus instead on the business logic and
its monitoring and achieve a separation of concerns.

The presented concepts have implications for understanding
attacks on bridges. Some examples of recent mediatic attacks
include the Wormhole bridge, where the attacker stole around
$325M [9], [10], and the largest on-chain attack in the
cryptocurrencies history, the Axie Infinity’s Ronin Bridge
[11], which caused around $625M in loss. In February 2022,
the Wormhole bridge was attacked and resulted in $320M in
damage [12]. In June 2022, the Harmony bridge was hacked,
resulting in $100 million in losses [13]. Although the hackers
were offered $1 million to return the funds to the community,
it seems they have not complied [14]. In August 2022, the
Nomad bridge collateral was stolen, resulting in the loss of
$200M [15], despite the bridge being developed by an expert
team and its being audited multiple times.

Looking at the facts, many of the largest decentralized
finance hacks in blockchain history were performed in bridges
[16], in a grand total of more than $1.5B in damages [17],
[18]. The facts show that the community still does not know
how to implement secure bridges, leading to systematic attacks
on bridges, and damaging entire blockchain communities. The
trend for attackers to exploit bridges will likely not disappear
soon, as the more value bridges they hold, the more incentive
criminals will have to attack those systems [19]. Capturing
cross-chain logic for bridges would be useful to formalize the
protocols (and help identify bugs and bottlenecks), monitor



them, and act upon certain triggers. For instance, if an attack
on a bridge is detected, a monitoring smart contract may
pause the withdrawals, limiting the scope and impact of the
attack. However, defining cross-chain logic is difficult because
the base systems to be dealt with are heterogeneous and
decentralized, and the systems built on top of them (e.g.,
decentralized applications) may have arbitrarily complex busi-
ness logic and can be composed with multiple other systems
(e.g., smart contracts). In a cross-chain setting, automating the
discovery of ccmodels and enabling its monitoring becomes
very challenging, as there is a lack of tools to secure and
monitor cross-chain applications. This is where our work fills
the gap in current knowledge.

In this paper, we propose Hephaestus, a system that cre-
ates ccmodels for fine-grain monitoring and auditing multiple
blockchain use cases. Our system uses and extends a state-
of-the-art BI solution, Hyperledger Cactus [20]. We build a
ccmodel from cctxs formed by cross-chain events. Each model
captures the rules that dictate which cctxs should be issued
within a particular protocol. After that, such a model can be
instantiated and capture a cross-chain state in real-time. The
cross-chain state allows capturing relevant metrics of liveness
(latency, throughput), safety (compliance with the transactional
flow of the model), and others (cost, carbon footprint). This
granularity allows us to answer several questions: What is
happening on the chains given a use case/protocol, at each
moment?, Are there unexpected behaviors, i.e., deviations from
the model?, What are the current bottlenecks of my cross-chain
use case?, and Is there suspicious behavior concerning my use
case?. We pave the way for developers to anchor fail-switches
to their use case based on some condition.

We validate these contributions by implementing a bridge
system between Hyperledger Fabric and Hyperledger Besu
and generating a ccmodel of its operations. As a technical
contribution of independent interest, we have developed and
improved various Hyperledger Cactus components over the
last months, including the Hyperledger Fabric connector, the
Hyperledger Besu connector, several test ledgers, the Rab-
bitMQ test server, and several Python notebooks supporting
our system. We empirically evaluate our system and its sub-
components according to a set of metrics on different scenarios
and workloads.

II. BACKGROUND

This section presents the background necessary to under-
stand the paper, that is, processes, BI, and cctxs.

A. Process Mining Background and Applications

Understanding core concepts around processes is important
to construct a system that can analyze cctxs and thus create
ccmodels. A process is a set of activities (or tasks) that aims
to fulfill a certain goal [22]. For example, behind running
a proof-of-stake blockchain, we have different processes a
validator needs to run to achieve the end goal, the network’s
maintenance process, the consensus process, and so on.
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Fig. 1. Total value locked, in dollars, for the main Ethereum bridges.
Visualization created by Dune/eliasimos [21]. Figure la) shows the total
value locked in dollars between May 2021 and June 2022. Figure 1b) shows
the total value locked as of the 11th of November, 2022. Figure 1c) shows
the total value locked on the 18th of June 2022.

The techniques for creating, analyzing, and optimizing
processes are called process mining techniques [23]. Process
mining has two sub-areas that help us in our endeavors:
process discovery and process conformance. Process discovery
aims to infer a process from an event log, this is, from a set
of related entries, typically represented in a table. Entries in
this table are events. An event is an occurrence targeting an
activity and a point in time and is related to each other using
a case id. Events point to an activity at a certain time, i.e.,
they have a timestamp. Activities are the operations that are
executed within a process. Formally, an event e is a tuple
(act, caseld, timestamp, store), where act is the activity
name, caseld is the unique reference to the event, timestamp
refers to when the event was created, and a key-value store
store. The key-value is in the form {(ay,v1),...(an,vm)},
where each a is an attribute of the event and v its value. The
set of all events is £.

The execution of a process produces what is called a trace,
an ordered list of events with the same case id. Formally,
a trace is a non-empty sequence [eq,...epy], € [l.n],e; €
E A Vi,j[1.n],€.caseID = €j.caserp- An event log is a
collection of traces referring to one or more cases. Discovering
a process model can be done in various ways. For a detailed
overview of how to generate process models, please refer to



[24]. Process conformance checks if the incoming transactions,
including their ordering (or event entries), conform (are ex-
pected) to an existing model, helping evaluate a property called
replay fitness. Conformance is part of process monitoring,
helping identify errors or deviations from expected behavior.
Processes have different representations. Graphical represen-
tations include BPMN diagrams [25], a notation useful for
complex process semantics. In BPMN, events are denoted as
circles, activities as rounded squares, and gateways as diamond
squares.

B. Blockchain and Interoperability

A blockchain or ledger £ supports two basic operations:
reads and writes. Keys index information on blockchains, i.e.,
we look at blockchains as key-value stores. A read operation
obtains the value for a certain key, i.e., read(key) = value.
A write operation on a key updates the value and returns 1
if successful, otherwise it returns 0: write,(key, value) —
{0,1}. We call these writes local transactions. The history
of each key’s values is conserved by the blockchain data
structure, which aggregates transactions (write requests) into
cryptographically signed blocks. Reads are used to capture the
part of the state relevant for interoperability processes.

This simple functionality allows to execute local transac-
tions and read the global state. BI is the problem of coordi-
nating local reads and local writes such that they satisfy some
cross-chain logic. This is, reads from £; can be composed
with a write-on Lo, realizing multiple use cases, such as data
transfers, asset transfers, or asset exchanges [26]. Extensive
work has been done in this area, including using two-phase
commit to provide cctxs ACID [27] properties, where each
local transaction executes successfully, or none at all [8].
We assume there is a cross-chain protocol deployed that
orchestrates cctxs. A cross-chain is an abstraction rooted in a
set of local transactions from different systems (e.g., enterprise
legacy system, centralized databases, blockchains), respecting
a set of rules. Further ahead in the paper, we explain formally
what these concepts are. We will map the concept of a cctx
as a set of events (which represent local transactions) that
constitute a trace over a process model. A local transaction
is a transaction native to a given technological environment,
called domain. Examples of domains are blockchains such
as Hyperledger Fabric network, the Ethereum main net, a
Substrate-based parachain, Optimism, centralized databases,
and distributed databases. Transactions trigger state changes,
this is s —%s s’. Transactions have different life cycles, data
formats, and properties as a function of their domain.

From the Blockchain View Integration Framework [2], a
local transaction ¢ is a tuple:

t = (tid, t, target, payload, o v (tid, t, target, payload))
ey
where tid is the local transaction id, ¢ is the timestamp, target
is the state key to which the transaction points, payload
is the payload (e.g., smart contract call) that will yield a
state change (or a new value for a certain state key), and

o (tid, t, target, payload) is a signature of the issuer of the
transaction. We denote the execution of a local transaction t
(in terms of state changes) as s(t). Each state has a key, s
and a value s ,. Thus, s(t) = (sg, sk,») represents the state
value of state s after the execution of transaction ¢ (and thus,
t.target = si).

III. CROSS-CHAIN TRANSACTIONS

In this section, we define cctxs and their atomic units, the
cross-chain events (ccevents).

A ccevent extends a local transaction with metadata. We
consider this metadata to be a set of non-native attributes (or
parameters) {a1,as, ...,a,} and their values {v1,va,..., v, }.
A ccevent e has native attributes (e.g., tid, target, and other
elements from the transaction defined in the previous section),
and non-native attributes, obtained via a function add, i.e.,
e = addy«(a,data), where add is a function that adds data
item data to an attribute a of a local transaction ¢ from ledger
l. Each data item is a non-native parameter (marked with X
in Table I). The native parameters can be obtained from the
underlying domains or systems, i.e., they can be retrieved from
the nodes supporting the blockchains without post-processing.
Non-native parameters are externally obtained and are used
to enrich local transactions. Native parameters may be used
to calculate non-native parameters. For example, the carbon
footprint depends on native parameters (e.g., on the native
parameter cost (gas), in Ethereum).

Parameter Type Native
case ID string X
receipt ID string
timestamp Date
blockchain ID  string X
invocation type  string
method name string
parameters string
identity string

cost number
latency number

carbon footprint number X

TABLE 1
ccevent PARAMETERS, THEIR TYPE, AND NATURE (NATIVE v OR NOT X).

A cctx cctx is a tuple (€, R) of n ordered events (by time) £
from a subset of domains (e.g., ledgers) {d',...,d"} € D, i.e.,
&= {e‘fleD, s ekaGD}, and R is a set of rules. We refer to
cross-domain transactions as cctxs where the involved systems
are exclusively distributed ledgers. Rules define conditions that
must be verified to each event within a cctx to be executed -
they depict the dependencies of each event on, for example,
global time, local state, and third party domain state. Formally,
a rule is a datalog rule [28], [29]. A datalog rule contains a
head Rg and a body, and it is defined recursively. Given a



set of predicates ¢ = {(1,(a,...,(,} Over a set of events &,
we have that, for a certain time interval t; a rule is given
in the form Rg,;, <— ((&) (we omit ¢5 for simplicity of
representation). The event set satisfying R¢ are the intersection
{E|C1(E) N G(E) A oo A Gu(E)}, this is, for an event set to
satisfy a rule, it needs to satisfy all predicates. Each predicate
¢ can define the conditions over transactions, i.e., temporal
dependencies, the domain of a transaction, or a target function.
For example, consider the following rule (predicate set):
Ci(e) =e* < e¥

Ca(e) =Ve:e® VeY

(3(e) =3e:e.cost < z

Ca(e) = ew-target = eyty-target

order dependency
included domains

(&) = @

event attributes
event payload

In this predicate set, (; defines any event happening in the
domain d, precedes (<) any event happening in the domain
d,. Predicate (o defines that events can only be part of domains
x or y. Predicate (3 states that there is at least one event in
the event set, so its cost is less than z. Predicate (4 states
that the target of a transaction repeats every v transactions.
Other predicates can be set for any of the attributes of a
ccevent, in Table 1. While we require each event to satisfy
each sub-predicate of (, we can also set the validity of
rules as the union {&|¢1(E) V ((E) V ... V (,(E)}, or any
other combination of predicates. We assume that there is an
efficient way to transform a set of conjunction predicates
into disjunctions or other formats. We define a function
verifySatisfability that takes a predicate and an
event, and outputs 1 if the event satisfy the given predicate
and O otherwise, i.e., verifySatisfability(e,{) —
{0,1}. We can then use this predicate for each event to assert
a rule’s validity.

To understand how this concept applies to practice, consider
the following (simplified) rule that dictates the necessary
events for a valid cross-chain asset transfer:

Cile) = (Ve(e®VeY) A Vee(w’y)(ew <eY)

events happeninx ory  events on x happen before y

¢h(e) = e .target = exists(a) A e”.target = lock(a)

dE =
asset can only be locked if exists
Ch(e) = ¢ A €Y. target = mint(a)
(o’ is satisfied a mint can occur in domain y

3
Let us define rule ¢, the disjunction of the ¢’ predicate
set. The predicate set ¢’ defines a set of conditions for a
cross-chain asset transfer to be valid. First, as determined
by ({, events in domain x must happen before events in
the domain y. This paves the way for a lock on a source
blockchain to be done before a mint on a target blockchain.
Predicate () states that an asset from the source blockchain
must exist before it is locked. Predicate (4 states that before
an asset is minted on the target blockchain, predicate ¢} must
be satisfied. One could add more rules, such as the time
for a mint transaction has to be done before block b, i.e.,
e.target = mint A e.timestamp < b. We illustrate a cross-
chain use case that allows asset transfers, in finer detail, in
Section VII.

Cross-chain rules are enforced by constructs such as smart
contracts. The combination of smart contracts in different
domains realizes and then populates a cross-chain state. As
each domain has its clock, time is not necessarily equivalent
to other domains (e.g., time in blockchains, typically measured
in block height, is different in Ethereum vs. Bitcoin). Thus, we
need a global clock, from an external observer, in this case, the
ccmodel generator, that could interpret time similarly. There is
a clock that observes a series of blockchains and attributes a
timestamp to each other. Each local time can then be mapped
to a global time.

IV. CROSS-CHAIN MODELS

In this section, we introduce the notion of ccmodel. A
cemodel M is a tuple (R, cctx, map,S,), where R is a set
of cross-chain rules, cctx is a set of cctxs, map is a function
mapping a cctx to a set of events e, i.e., map(cctz) — e,
and S is the cross-chain state. The state allows representing
on-chain behaviour from observed events (built from local
transactions).

Each model is a container for related cctxs. Each cctx has a
set of rules that allow the verification of its correct execution:
one can take a cctx and its rules and verify if the local trans-
actions follow each rule. We say a cctx follows a cross-chain
rule if the evaluation of each predicate on the combination
of events forming a cctx is 1, i.e., valid(ectx,rule) : Ve €
cctr : verifySatisfability(e,rule) = 1. The cross-
chain state is a key-value store that holds attributes relevant
to the cross-chain use case, i.e., they are defined on a case-
by-case basis. We call some attributes of the ccmodel metrics.
Metrics are performance attributes of a set of cctxs and provide
meta-information about a cross-chain use case.

A. Properties

A ccmodel should provide two main properties.

« Probabilistic-Completeness: the larger the event log (i.e.,
the number of observed events and consequently cctxs),
the higher the model completeness probability.

« Replay fitness: given an observation of the real-world use
case, the matching between the observations (in the form
of events) and the ccmodel is higher than a threshold
probability p.

Completeness is related to precision. A precise model avoids
underfitting, a degree of measurement of how complete is the
ccmodel. The replay fitness expresses the ability to explain on-
chain behavior, i.e., how close the ccmodel is to reality. Other
properties that are interesting in our context matter but will
be explored in future work. Those generalizations measure
if the model is too tied to specific execution instances of
a cross-chain use case. Simplicity measures if the model is
understandable by humans. Other aspects are omitted from
the model generation, such as the task of minimizing noise,
that is, minimizing behavior that is infrequent and does not
represent the typical behavior of the process.



B. Metrics

Within S, we define metrics, M = My, M>, ..., M,,. These
metrics indicate points of interest in a cross-chain use case.
Metrics realize a meta state, where metrics about the formation
and execution events that lead to that state are created.

M;: Latency: We define latency as the time between a
local transaction (via extended clients) and the creation of
an ccevent. The total latency of a cctx (6(cctz)) is given by
the latency of each event d(e) from each local transaction,
summed to the operational latency of the ccmodel generator

(6(op)):

§(ectx) = z (5(6?) + 6(op)
3::1177]?

Vde € cctx  (4)

The operational latency is the time the model generator
takes to retrieve and process the local transactions.
The latency of a ccmodel is the sum of the latency of each

cctx.
S(M) = | >

yees T

0(ecta;) )

Ms: Throughput: The throughput of a cctx is defined as
m, and it counts the number of sets of events processed
per unit of time. Effectively, the latency for each event com-
presses the issuance and processing of each local transaction
(which can take a long time depending on the blockchain), plus
operational costs. The slowest finalization time ¢ f,,,4, can be
a useful metric to complement throughput (and help identify
bottlenecks in a cctx).

max ((5(6?) (6)

5fmaz =
e; €E,deD

Msy: Carbon footprint

A carbon footprint of a cctx is the total amount of car-
bon dioxide associated with its preparation, execution, and
commitment!. In this section, we make an educated guess
for each system supported in our examples: a Hyperledger
Fabric network (private blockchain) and a Hyperledger Besu
blockchain (private blockchain).

Proof-of-work blockchains, such as the Bitcoin blockchain,
are said to be using 130TWh (terawatts hour) of energy per
year (comparable to a country like Ukraine or Argentina) [30],
each transaction could account for 830kWh, or 3.6 x 10~1!
tCO2/kWh (metric tons of COs per kilowatt-hour) [31],
assuming all the nodes are being operated in the United States
[32]. Translating kilowatts per hour to carbon emissions is
difficult because the rate depends on the energy sources, the
hardware the nodes run, and the machine (cloud vs. local). For
Ethereum, the associated energy expenditure would be around
50kWh per transaction, an estimate of 2.165 x 10~2 metric
tons COs/kW h. The energetic expenditure associated with
all transactions in a year would be around 26TWh.

TA detailed and rigorous analysis of the carbon emission of different
blockchain platforms is out of the scope of this work.

Tezos, a proof of stake blockchain, consumes 0.00006 TWh,
or 0.6 KWh per year or 0.030 Wh per transaction [31].
However, other estimates put Tezos using around 41 Wh per
transaction [?]. Each transaction could account for 1.3 x 10~7
metric tons COs/kWh or 1.8 X 10~* metric tons CO2/kWh,
depending on the estimate.

To our knowledge, there are no studies on the energetic
consumption of Fabric or Besus’ private networks. Since their
consensus is pluggable, using RAFT, or IBFT, respectively,
we expect the energy expenditure to be in the same order of
magnitude as Proof-of-stake systems or less. Therefore, we
use the Tezos blockchain estimation, 1.8 x 10~% tCO, JkWh
per transaction, knowing that this would be an upper limit.
The total carbon footprint originated by a cctx in a system
composed of private blockchains is then given by:

carbon = constant X |cctz|(tCO2/kW h) (7

where the constant 1.8 x 1074, and |cctx| is the number of
events in a cctx.

Ms: Cost and Revenue: Each local transaction might have
a cost of transaction fees plus operation fees (in case a relayer
or entity is transporting the local transaction payload across
chains). Inspired by [33], we define the cost ¢ of a cctx cctx
events as the sum of variable costs (cs) plus operational costs
(Cop):

c(ectr) = Z costs(e;”) + Cop
SR

Vde € cctx  (8)

The environment (e.g., via our system) typically gives
information about these costs. The revenue is calculated in
a way similar to the above formula. We can then calculate the
profit of each cctx by subtracting the costs from the revenue.
The concept of revenue can be modeled as positive utility and
cost as negative utility, which sometimes maps better to real-
world applications.

V. HEPHAESTUS: A CROSS-CHAIN MODEL GENERATOR

Hephaestus2 is a software system that generates cc-
models by mapping local transactions to ccevents (events)
and then processing them, generating cctxs. Those cctxs assist
generating a ccmodel, which holds metrics of interest. We
assume the existence of several domains that can emit events
(step @ from Figure 2). Furthermore, the cross-chain logic is
realized by a cross-chain protocol enforced by smart contracts
on both domains.

After defining our domain scope, a set of modified
blockchain clients, called connectors issue transactions against
target blockchains via an end-user or application (step @).
These blockchains emit events (or transaction receipts) that
our connectors capture. Hephaestus then collects the lo-
cal transactions (also called transaction receipts) in step @

2Hephaestus is the greek god of metallurgy (that can connect different
chains into a single useful artifact.)
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Fig. 2. Cross-chain model pipeline, spanning from phases 2 to 5.

and generates ccevents enriched with metadata. After that,
it generates a set of cctxs (@) and finally it generates a
ccmodel (@). The next section will illustrate these last three
steps in finer detail. Business logic can be defined to facilitate
the integration with legacy systems or to implement audit or
monitoring functionality. Finally, an end-user should be able
to query real-time metrics using a dedicated dashboard.

A. System Model

Cross-chain applications are structured as multi-step pro-
tocols, where there are different types of agents. Agents are
users (e.g., end-users, relayers [2], or protocol administrators),
and smart contracts. Users take turns doing off-chain process-
ing and interacting with one or more domains (e.g., submit
transactions against smart contracts). Agents are considered
Byzantine, i.e., they can attempt to deviate from a protocol.
Smart contracts enforce cross-chain logic. Specifically, smart
contracts running on different blockchains are trusted repli-
cas in the state-machine replication literature (similarly, each
domain is considered trusted, even if centralized).

This model protects agents who honestly follow the protocol
from those who do not. This assumption implies that if a
domain cannot be trusted, then safety on cross-chain rule
execution cannot be guaranteed. Domains can only learn the
state of other domains and their changes using an agent. Of
course, each domain must decide whether an agent is telling
the truth. This can be achieved with a cross-chain protocol,
where trust assumptions vary substantially [1]. Our model
assumes a cross-chain protocol that can provide safety and
liveness. Safety states that the execution of cross-chain rules
results in a consistent cross-chain state for a certain definition
of a cross-chain state. In a cross-chain asset transfer, safety
would mean that there is no double spend, this is, it is not
possible to mint an asset on a target blockchain without first
locking it on the source blockchain; and similarly, it is not
possible to unlock such asset on the source blockchain without
first burning it on the target blockchain. Liveness ensures that
all cross-chain rules from a protocol are evaluated (executed).

In the case of an asset transfer protocol, liveness means that
“conforming parties’ assets cannot be locked up forever”.

Hephaestus observes the interactions between users
and smart contracts. We assume a partial synchrony model,
i.e., there is some finite unknown upper bound § on
the creation of events within domains. The bound ¢ is
not known in advance and can be chosen by the adver-
saries (in each blockchain). We consider the delay to be
max (041,042, - - - ,04n). Hephaestus runs a global clock,
i.e., it can measure time against different domains, despite their
clocks being different. Hephaestus provides accountability,
meaning It is possible to verify a set of cross-chain rules has
been followed or not.

B. Cross-Chain Model Generation

In this section, we explain how to generate a model, focus-
ing on phases @ to @ Our pipeline is divided into phases:
@ Emit Local Transactions, @ Poll Local Transactions, @
Create CC-TXs, and @ Create CC-Model. Figure 2 represents
the four phases, which we will describe in detail next.

In phase @, we start by listening to local transactions
in our domain set D. Each domain in our system has an
accessible event pool, from which we can fetch the events used
to build the model. Without loss of generality, and to simplify
our reasoning, we look for local transactions in the domains
ledger £1 (@), and ledger £5 (). The considered trans-
actions are created and submitted by our connectors, C; and
Ca, respectively. Transactions have a case id, meaning local
transactions without this special identifier are not considered.
Our clients capture the relevant transactions and send them
to the ccmodel generator, starting the next phase. In phase
@, the raw transaction receipts enter a processor module
that translates local transactions into a ccevent according to
a function map2event(txs) — ccevent.

The output of phase @ are ccevents coming from £, @
eventy, and from ledger Lo, O eventy which we aggregate
onto a ccevent log, with events coming from different ledgers.
Therefore, events implement a standardized data model. After



constructing a set of events, we proceed to phase @ In this
phase, we receive an event log and output the cross-chain state
and a set of cctxs (via a createCCTXs function). We create
cross-chain transactions by aggregating ccevents by its case id
and calculating relevant metrics (please refer to Section VI).
We build the cross-chain state according to Algorithm 1.

Algorithm 1: CreateCCState. Creation of a cross-
chain state from a set of ccevents
Input: Set of events £
Input: State builder algorithm A
Input: Cross-chain rules R
Output: Cross-chain state S
1S+ 10
2 foreach e € £ do

3 if verifySatisfability(e, R) then

4 | continue

5 end

6 else

7 ...

8 rules are not satisfied, emit alert and abort abort
9 end

10 if AS[e.caseI D] then

11 each cross-chain state key is indexed by case ID

12 Sle.caselD)].casel D = e.caselD use raw events
data to setup cross-chain state

13 S[caseld).id = randomNumber()

14 smart contract function or target
Slcaseld].target Function = e.target

15 Slcaseld].transactionListRefs = e.receiptID

16 Slcaseld].lastUpdated = e.timestamp

17 Slcaseld].latency = e.latency

18 Slcaseld].cost = e.cost

19 Slcaseld].revenue = e.revenue

20 S|caseld].callers = e.identity

21 Slcaseld].carbonFootprint = e.carbonFootprint

22 e

23 end

24 else

25 .

26 if state key already exists, update its values (i.e.,
calculate average latency, cost)

27 end

28 end

29 S = processArbitraryState4(S)

30 return S

Our algorithm receives the processed ccevents and a pro-
cessing algorithm 4. Each event follows the data model de-
scribed in Section III. The processing algorithm is responsible
for creating the part of the cross-chain state that is composesed
of the metrics gathered from running several local transactions
(lines 11-21, not meant to be exhaustive). If there are multiple
ccevents with the same case ID, it must be a cctx composed
of multiple local transactions. The algorithm 4 adds the
semantics of a multi-chain use case. We exemplify 4 by
setting it to be a veri fyLock function. This function would
verify if an asset was locked on a source blockchain so it can
be minted on a target blockchain, implementing the cross-
chain state (basically one bit for each tracked asset, allowing
to verify if it is locked on a source chain). Note that this

function is illustrative and does not reflect a complex lock-
unlock mechanism. For instance, the algorithm should check
if an unlock with a newer timestamp happened regarding a
locked asset. This function is encoded in Algorithm 2. Having
a cross-chain state, we initiate the ccmodel generation phase
@. In this phase, we generate a ccmodel using an algorithm A4
and the ccevent log. Note that it is possible to additionally use
information from the cctx log, such as the different metrics,
to generate the model. Several graphical representations are
possible, such as a process tree or a BPMN model (shown
later in this paper).

Algorithm 2: Verification of a lock transaction refer-
ring to asset a

Input: Cross-chain state S
Input: Case id ¢d referring to the lock
Output: Updated cross-chain state S’
18+ 0
2 foreach s € S do
3 if s.caselD = id then

4 if
e.target == verifyLockAe.parameters == a
then

5 | sdockedAssets[a] = 1

6 end

7 end

8 end

9 return S’

C. Identifying non-conformance

In this section, we explain how we detect non-
conformance behavior. Non-conformance behavior can be one
of three: outliers, malicious intent (bug exploitation/attack),
or non-modeled behavior. The baseline for detecting non-
conformance is a ccmodel, which corresponds to a specifica-
tion of expected behavior. We define a set of traces belonging
to the set of all possible traces {t1,...,t,} € T as a current
execution of a cross-chain use case. For each trace being
executed, we consider a set of steps sy, ..., s,. We then take
the sequence of steps and perform alignment. Alignment-based
replay aims to find one of the best alignment between the trace
and the model. Each alignment creates a set of pairs (trace,
transition) such that for each pair, one of the following can
occur: 1) SYNC MOVE @ - both the trace and the model
advance in the same way during the replay, meaning we have a
match, 2) MOVE ON LOG @ - the trace that is not mimicked
in the model. This means there is a deviation between our
specification and the observed behavior.

The idea is now to retrieve incoming ccevents and build
a trace. If a trace is SYNC MOVE @, then it is common
behaviour (expected). Otherwise, it is non-modeled behavior,
MOVE ON LOG @, which should be investigated. This
behavior can result from under-modeling or malicious be-
havior (for example, an attack). In any case, the end-user
may inspect the event leading to the trace and understand
which parameter has caused such behavior. Malicious behavior



can come in different forms. The most common are smart
contract vulnerabilities holding the business logic that realizes
the use case. Many more attack vectors exist, such as smart
contract framework vulnerability, dependency vulnerability,
cryptographic vulnerability, network attacks such as denial
of service or network partitioning, consensus manipulation,
and others [34]. In this paper, we focus on attacks on smart
contract exploitation (in the form of manipulating a defined
transaction flow). However, we could generalize our scheme
to cover different attack vectors.

VI. IMPLEMENTATION

In this section, we present the implementation. The code is
available on Github®. We developed our work as a Hyperledger
Cactus (Cactus) [20] plugin. Cactus is a blockchain integra-
tion project supported by enterprises such as Blockdaemon,
Accenture, IBM, Fujitsu, with more than 230 stars and 65
contributors. Next, we detail this paper’s relevant technical
contributions and the implementation of Hephaestus.

A. Connectors

We implemented two blockchain connectors to connect
to multiple blockchains and retrieve transactions. Connectors
are self-contained application programming interfaces that
constitute the basis for interoperability functionality. The first
connector binds our software to Hyperledger Fabric 2.2 —
a permissioned blockchain system. Fabric is designed for
enterprise-grade applications that benefit from decentraliza-
tion. It supports smart contracts (called chaincode), that can
be written in several general-purpose programming languages.
The nodes execute proposals for transactions signed and sent
to an orderer node. Orderer nodes reach consensus on the order
of transactions, batch them into blocks, and link them, creating
the blockchain. Then, new blocks are sent to the nodes on the
network. Fabric has a key-value store that holds the most up-
to-date values from the blockchain - for performance reasons;
it allows chaincodes to retrieve state without reconstructing
the blockchain. We implemented this connector, package name
cactus-plugin-ledger-connector-fabric in Typescript, counting
4958 lines of code. We wrote 16 integration tests, accounting
for 4450 lines of code. The connector supports functionality
to issue transactions, deploy smart contracts, send transaction
receipts to Hephaestus, and several administrative tasks
(such as registering a new user).

The second connector connects to a Hyperledger Besu
(Besu) 1.5.1 network. Besu is an open-source Ethereum
client, that also has capabilities to span private networks.
It allows for interacting with Ethereum networks, including
participating in the consensus process, and to develop and
deploying smart contracts and decentralized applications. Besu
implements proof of authority algorithms such as IBFT (more
suitable for private networks) and proof of work (Ethash).
We implemented this connector, package name cactus-plugin-
ledger-connector-besu in Typescript, counting 4629 lines of

3https://rafaelapb.page.link/code

Concept |
Domain
Domain logic

Implementation Lines of code
Fabric (L£1), Besu (L2) -
Bridge smart contracts 819

Ledger client Fabric (Cz1), Besu (Cz2) 17,463
Test ledger Fabric and Besu test ledgers 1,873
Model Generator Hephaestus 5,921
Process Discovery pmdpy -
Process Conformance pmépy -
TABLE II

IMPLEMENTATION EFFORT AS THE NUMBER OF LINES OF CODE CREATED,
FOR EACH PRESENTED COMPONENT

code. We wrote 14 integration tests, accounting for 3426
lines of code. The connector supports functionality to issue
transactions (signed and unsigned), deploy smart contracts,
send transaction receipts to Hephaestus, and several ad-
ministrative tasks (such as obtaining a raw block from the
network).

B. Test ledgers

We implemented tools to programmatically create test net-
works for Fabric and Besu, allowing for reproducible tests
and debugging of our application, namely the tools besu-all-
in-one and fabric-all-in-one. These tools not only allow the
reproducibility of our work but also ease the developers to
create new applications and build on top of Hephaestus.
The all-in-one test ledgers are divided into two parts: 1) a
test ledger manager, a program that launches, administrates,
stops, and destroys test ledgers, and 2) Dockerfiles defining
the networks. The Fabric test ledger manager has 1445 lines
of code and, since deployed, had more than 80 thousand pulls
from Dockerhub*. The Besu test ledger manager has 428 lines
of code and, since deployed, had more than 390 thousand
pulls from Dockerhub. Other test ledgers such as corda-all-
in-one and substrate-all-in-one are available for the research
community.

C. Smart Contracts

We implement a use case composed of an asset transfer
across a Hyperledger Besu network and a Hyperledger Fabric
network as a foundation for testing Hephaestus capabilities.
A cross-chain asset transfer generates a set of events repre-
senting an asset lock on a source blockchain (Besu), and an
asset unlock on a target blockchain (Fabric). This lock-unlock
mechanism assures that the representation of a minted asset is
pegged to a locked asset. In asset transfers, there is typically
a third party actor called a relayer, which carries the proof of
a lock to the target blockchain, so the mint can occur’.

The use case is implemented as follows: on the Besu
network, we have a Solidity smart contract with two methods:
create asset, and lock asset. First, a user must create an asset
and then lock it. On the Fabric network, the Typescript smart

“4also accounts for pulls generated by the continuous integration pipeline,
such as in automated tests

SWe could model the relayers behavior in our use case, by adding two
activities: submit proof, which contains a payload that certifies that an asset
was locked from the source chain, and proof submission, a payload consisting
of a proof that validates the minting of an asset. These events would be added
by a system other than the mock blockchain (e.g., relayer).



contract allows a user to call mint asset, creating the repre-
sentation of the locked asset. Using a cross-chain protocol,
we assume that a relayer submits the necessary proofs on the
Fabric blockchain for the mint to happen. After that, a user can
freely transfer that token to other users in exchange for other
tokens, using transfer asset (optional). Finally, if users want to
recover the original tokens, they run burn asset representation.
We assume that a relayer carries the necessary proofs of the
burn to the source blockchain. This procedure would unlock
the assets on the source chain.

D. Hephaestus

We implemented Hephaestus as a business logic plugin
for Hyperledger Cactus, written in Typescript. Its latest version
is version commit 8d8567e (stable branch), package name
cactus-plugin-cc-tx-visualization. Hephaestus is initialized
with a set of connectors used to capture local transactions.
Then transactions are mapped to ccevents. The ccevents are
used to build a cross-chain state, and then we give the
ccevents to a Python script (model generator) that, on its
end, generates the ccmodel. The model generator used the
open-source library pm4py version 2.2.20 [35]. We generate
our model using the Inductive Miner algorithm [36]. Our
plugin counts a total of 1492 lines of code. We wrote 18
integration tests, accounting for 4429 lines of code. To identify
misconformance, we used an alignment technique, available
in the conformance_diagnostics_alignments function from the
pmApy library, namely the Scipy linear solver tool.

VII. EVALUATION

Goals: The goals of the experiments are as follows. 1)
evaluate Hephaestus performance in terms of transaction
throughput, latency, and storage required. We also evalu-
ate the scaling capabilities concerning the number of local
transactions, activities, and domains. Goal 2) is to evaluate
the system’s capability to identify misconformance, given a
baseline ccmodel

Experimental Setup: We deployed an instance of
Hephaestus on Google Cloud (CPU with eight cores,
32Gb of RAM, SSD). The different event providers are
our Hyperledger Fabric connector, and the Hyperledger
Besu connector (version 1.0.0). We initialize a RabbitMQ
server serving our event collector rabbitmg-test-server. Event
emitters on the connectors are implemented as RabbitMQ
clients. Every experiment was run 50 times (where we
removed the first and last 10 runs, considering a total of
30 runs), and we report the average result, along with the
standard deviation, for each run. We share the scripts to
generate the plots and ccmodels, making the evaluation
process reproducible. Furthermore, we save the output of
each evaluation scenario ® and the generated cross-chain logs
7 and share it with the reader.

5Online: https://rafaelapb.page.link/cctx-viz-output
7Online: https://rafaelapb.page.link/cctx-viz-csv

Metrics and Workloads: For each run, we capture the
following metrics: throughput (cctxs) and their latency, storage
cost, i.e., performance metrics. We test two scenarios under
variable workloads, which we present later in this section.
We characterize each scenario as a tuple (interoperation
mode, number of blockchains, event type, and workload).
The interoperation mode states what cross-chain feature we
are testing, asset transfers, asset exchanges, or data transfers.
While intuitive, for space limitations, we refer to [26] for
a detailed explanation. The number of domains reflects the
number of ledgers or other systems emitting events in the
scenario, namely Hyperledger Fabric, Hyperledger Besu, or
a mock blockchain (essentially, we only model the message
transmission). Finally, each workload contains details on the
number of events, activities, and domains in that scenario.
We implemented a workload generator that produces events
across different blockchains. Events are then captured by
Hephaestus.

A. Baseline: Dummy Use Case with Test Receipts

In this section, we depict the evaluation of our system using
a mock blockchain.

Interoperation Mode: Asset Transfer

Number of domains: 1

Event Type: Test (Mock Blockchain)

Workload: 6 events, 6 activities, ccmodel generation algo-
rithm 4 = inductive miner

The dummy use case represents a cctx composed of 6
ccevents. This transaction locks an asset from a source
blockchain and unlocks a representation of the same asset on
a target blockchain (typically using parties called relayers®).
Instead of using blockchains to collect receipts, receipts are
emitted by a single mock blockchain, which we call the fest
blockchain. The mock blockchain processes transactions as
detailed in Section VI-C, namely create asset, lock asset, mint
asset, transfer asset (optional) and burn asset representation.

We measure the performance of the following phases (see
Figure 3a): the Infrastructure Setup (phase 1), the emission and
polling of local transactions, as events Emit Local Transactions
(phase 2.1), and Poll Local Transactions (phase 2.2), the
creation of cctxs, Create CC-Tx (phase 3.1) and the creation of
the ccmodel, Create CC Model (phase 3.2). The infrastructure
setup includes setting the event emitters (connectors, including
creating blockchain networks and initializing the connectors),
setting the event collector (RabbitMQ server), and setting up
Hephaestus. The Emit Local Transactions phase emits test
events or issues transactions against the deployed ledgers.
The Poll Local Transactions waits for the events and sends
them to Hephaestus for processing. The Create CC-Tx
generation includes mapping the local transactions to cctxs,

8We could model a third-party responsible for carrying proofs of on-chain
execution, the relayer [l] - yielding two more events, in addition to the
modelled six. Those two extra events are modeled as activities: submit proof,
which contains a payload that certifies an asset was locked from the source
chain, and proof submission, a payload consisting in a proof that validates the
lock of an asset and thus allows its mining.
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Fig. 3. Figure a) shows the latency, in milliseconds, for each phase of
the baseline test scenario. Figure b) storage requirements, in kilobytes, for
a variable number of events.

and calculating cctx metrics. Figure 3a) shows the latency
phase breakdown for the emission of six events. We can
observe that the setup phase takes around 1.5 seconds, and the
most time-consuming phase takes approximately 3 seconds,
despite being mock transactions. Figure 4 shows the same
breakdown for a variable number of events. Table III supports
this figure by reporting the mean end-to-end latency for each
phase along with the standard deviation. Phases 1 and 2.2
remain practically constant. Phase 2.1 is sublinear. Phase 3.2’s
performance indicates that after a certain threshold (between
600 and 6000 transactions), the system starts slowing down
its performance.

We measure the storage required for generating, storing,
and processing events into a ccmodel. Figure 3b) shows the
required storage as a function of the number of events created.
The RabbitMQ container and respective runtime data occupy
257Mb and 72.4kB, respectively. The storage requirements
appear to be sublinear to the number of events - six events
(one cctx) occupy 789 bytes, while six thousand events occupy
around 6.6Mb. For a cctx, means each cctx occupies around
789 bytes + derived data (metrics, a few bytes). Since the
metrics are five floats, a date, a string with 128 chars, and a
list of events, each cctx occupies at least 937 bytes. Finally,
the cross-chain model generation phase includes parsing the
created cctxs and generating the ccmodel. The generated
BPMN model for the dummy use case scenario is represented
in Figure 5. Each cctx takes 985 milliseconds to build and has
a carbon footprint of 0.

Phase 1 [ Phase 2 [0 Phase 3 [
— Phase 2.1 Phase 2.2 Phase 3.1 Phase 3.2

events ©w o ©w o ©w o ©w o ©w o

6 1397.53 83.06 | 0.47 0.51 | 303027 8.94 | 0.67 0.61 | 8351 1.95

60 1387.93  20.09 | 2.20 0.66 | 306897 19.07 | 1.27 045 | 872 093

600 1388.33 2226 | 13.03 3.02 | 3163.47 21.89 | 7.53 1.14 | 9821 1.51
6000 139220 18.05 | 116.97 20.67 | 3459.37 1836 | 26.5 3.42 | 265.61 4.18

TABLE III

END-TO-END PROCESS LATENCY MEAN (1t) AND STANDARD DEVIATION
(o), IN MILLISECONDS, AS A FUNCTION OF THE NUMBER OF EVENTS.

B. Use Case: asset transfer across heterogeneous networks

In this section, we depict the evaluation of our system using
two blockchains.

Interoperation Mode: Asset Transfer

Number of domains: 2

Event Type: Hyperledger Fabric, Hyperledger Besu

Workload: 6 events (2 Besu plus 4 Fabric), 6 activities,
ccmodel generation algorithm A = inductive miner

Next, we illustrate an asset transfer between a private
network running Hyperledger Besu and a private network
running Hyperledger Fabric. The asset transfer process is the
same as in the baseline scenario, i.e., a cctx is composed
of 6 events. An Hephaestus instance is connected to a
Fabric connector and a Besu connector. Each connector is
connected to a Fabric network version 2.2 and Besu network
version 21.1, respectively. The Fabric network consists of 2
peers and 1 orderer, using Raft as the consensus protocol of
orderers and LevelDB to maintain the local storage in each
node. The Besu network consists of a solo node network. The
use case explored in this section follows the same transaction
flow as the baseline, i.e., transactions create asset, lock asset,
mint asset, transfer asset (two of them) and burn asset
representation are issued in this order. This flow implements
a simplified version of a cross-chain promissory note transfer
[8] between Hyperledger Besu and Hyperledger Fabric. We
used the smart contracts described in Section VI.

When testing the emission of 60 and 600 transactions, as
expected, the Infrastructure Setup and Emit Local transaction
phases take the most time. The median latency required for
these phases is 151, 237, and 1115 seconds, respectively, for
6, 60, and 600 events. The infrastructure setup phase takes
90%, 56%, 12% of the overall execution latency, while the
transaction emission takes 7%, 42%, 88%, for 6, 60, and 600
transactions, respectively. Since these phases take the most
of the execution time, we illustrate the breakdown of the
remaining phases, “Poll Local Transactions”, “Create CC-Tx”,
and “Create CC Model”, in Figure 4. The storage requirements
are similar to the baseline use case. For a 60 event execution,
we obtain that each cctx (6 events) takes 2,04 seconds to
construct and has a carbon footprint of 3.85 x 1075,

C. Baseline Vs. Use Case

The bottleneck for both scenarios is the infrastructure setup
(phase 1) and transaction emission phase (2.1) or polling
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Fig. 5. Generated business process modelling notation model for the events generated in the baseline phase.

transactions (phase 2.2). For the use case, the bottlenecks
are the infrastructure setup (phase 1) and receipt emission
phases (phase 2.1). We observe that the infrastructure setup
and transaction emission phases occupy around 97%, 98%,
and practically 100% of the execution time, depending if
we are emitting 6,60, or 600 events, respectively. This is
expected, and we conclude the bottleneck is the transaction
execution and commitment. In the dummy use case creating
receipts is a cheaper task than retrieving them; in this use
case, the inverse happens because executing transactions on
blockchains is generally an expensive task. In a production
environment, the cross-chain throughput is limited by the
finality speed of the underlying systems: the infrastructural
part of Hephaestus is efficient in issuing the transactions
and retrieving the respective receipts. Varying the number of
domains/blockchains should not affect the creation of cctx
as all transaction receipts are interpreted as ccevents. The
complexity of transforming the receipts into events may vary
significantly, but our experiments show a very low overhead.
Furthermore, the setup phase only needs to be performed once.
We conclude that our system is scalable in terms of latency
and extensibility.

D. Identifying Misconformance

In this section, we run experiments that allow us to evaluate
if Hephaestus can detect deviations from expected behav-
ior. Expected behavior, or the specification, is given by the
events we emit. After generating the ccmodel, we generate
another set of events, this time in the following order: create
asset, mint asset, transfer asset, burn asset. Note that the lock
asset phase is not present - this emulates a user attempting to
mint an asset without an appropriate lock. We obtain detailed
alignment information about transitions that did not execute
correctly, namely the mint before the lock. While it is possible
to obtain a set of detailed metrics such as throughput and cost
analysis of real-time flows, we stick to the conformance of

process (the fitness) for the sake of space. Figure 6 shows
the expected process for this use case. We obtain that a mint
should occur after it has occurred (' MintAsset’, ’'>>'),
and fitness 82%. The trace generated by our implementation
and the expected traces differ, originating a MOVE ON LOG

Expected cctx

Create, lock, mint, transfer, transfer, burn

POPDO®®
Ge8FP®

Create, X , mint, transfer, transfer, burn

Obtained cctx

Fig. 6. Misconformance detection process. Domain 1 events @) are happening
on the source chain; Domain 2 events ) happen in the target blockchain.
Events can lead to a SYNC ON MOVE @ or MOVE ON LOG @.

E. Qualitative Analysis

Hephaestus contributes to mitigating bridge hacks by 1)
generating a ccmodel of the bridge protocols, allowing reason-
ing about the protocol flow, bottlenecks, and possible threats
and vulnerabilities, and 2) minimizing the attack consequences
by finding active monitoring and detecting suspicious behavior
in real-time. From Section VII-D, we conclude that the replay
fitness of our model is 82%, although it is probably not
complete due to the low number of traces captured. However,
our tool can be deployed and set up to capture real use case
events from deployed smart contracts in production. Our tool
can be extended to act upon suspicious activity (e.g., freeze
certain types of transactions) by implementing the following
procedure: first, Hephaestus generates a ccmodel. Next, it
listens for transactions on the interest domains, and a trace
is built. Every step/transaction is analysed and classified as
@ or @ An event is emitted if the transaction creates



a discrepancy from the original model. This event triggers
business logic that deals with the occurrence (e.g., requesting
human confirmation; freezing a smart bridge contract). This
sort of mechanism would probably help mitigate bridge hacks,
and it is being actively explored by the industry [37]. For
this, good ccmodel representations are needed. We generate
BPMN models, that are good for expressing the semantics of
a cross-chain use case graphically, but research is still lacking.
An important assumption is that the model is complete, i.e.,
models all the desired behavior. However, this is not always
the case, and some @ events can be false negatives. Creating
robust models that tolerate noise and evaluating those models
is an evolving, core challenge in the process mining area
that would have repercussions in generating and maintaining
ccmodels [23].

In the baseline, we assume the revenue, cost, and carbon
footprint to be zero. Note that these parameters can be adjusted
according to the use case, allowing semantically enriching
each transaction. Associating cost and revenue values to trans-
action receipts would help calculate capital profit taxes for a
certain jurisdiction. In the use case scenario, we populate the
values for carbon footprints of the test ledgers accordingly
to Section IV. Although these numbers are only references,
it provides a step toward better energy measurements and
ecological responsibility. Finally, our system is designed mod-
ularly such that new blockchains can easily be supported. It
has the potential to be integrated into cross-chain APIs for
such purposes. The possibility of retrieving the cumulative
metrics for all cctxs processed in the ccmodel allows enhanced
and fine grain monitoring of cross-chain logic. We would like
to emphasize that Hephaestus could be used for use cases
other than bridges - we will address this topic as future work.

VIII. RELATED WORK

Hephaestus is the result of an inter-disciplinary work that
combines the fields of blockchain interoperability, on-chain
analytics, and process mining applied to the blockchain.

Monitoring Blockchain Interoperability

The work by Zhang et al. [38] seems to be the most similar
to ours. The authors create a tool to identify miss-conformance
on the lock-unlock bridge mechanism. However, this work is
directed specifically from bridges and not arbitrary cross-chain
use cases. On the other hand, BUNGEE is a general-agnostic
framework that inspires this work. In this paper, a tool that
produces consolidated views over user activity on different
blockchains [2] is proposed. Hephaestus can complement
BUNGEE to generate metrics, protocol behavior patterns, and
individual user activity. Hephaestus can be deployed over
interoperability protocols such as ODAP/SAT [8], [39], [40],
XCLAIM [41], and many others [1], to provide a monitoring
layer.

On-chain Analytics

In the field of on-chain analytics, some industry solutions
exist and are well-adopted: the Dune tool allows to Explore,

create and share crypto analytics, including key metrics for
DeFi, NFTs, and more, expressive queries, and the visual-
ization of information in dashboards. Hephaestus would
allow for the creation of a cross-chain Dune tool by cross-
referencing transactions in multiple chains [42]. Chainanalysis
provides a dashboard for investigation, compliance, and risk
management tools to assert compliance with jurisdictions and
fight fraud and illicit activities [43]. For example, it allows
to visualize the flow of funds and track movements across
currencies. Our tool would provide possibilities to port this
monitoring for the cross-chain scenario. Metla finance [44],
Morali [45], and Rokti [46] allows a unified view of
user assets over different blockchains. Hephaestus would
allow extending the views to support arbitrary states across
blockchains. Certik provides a monitoring layer for analyzing
and monitoring blockchain protocols and DeFi projects, but
only from a security perspective [47]. Token Flow is the
closest work to ours, an analytics tool to track cross-chain
asset transfers [48]. However, Token Flow does not support
arbitrary cross-chain use cases.

On the academic side, we have several tools that allow on-
chain analysis of smart contracts for security purposes [34],
[49], [50], performance [51], [S1], [52], compliance and anti-
fraud [53], and others [54], [55] . However, such projects
provide a sort of meta-view over user activity, do not provide
specific information about interaction with protocols, and are
not generalizable.

Process mining on blockchain

In the process mining area, some work has been done to
apply it to the blockchain. In [56], the authors used process
mining techniques to specify the behavior of the Augur pro-
tocol, discovering bottlenecks and proposing improvements.
Some tools to automatize the creation of process models from
blockchain protocols to facilitate multiple goals have been
proposed [57]-[60], but none for the cross-chain scenario.

IX. CONCLUDING REMARKS

The need for multi-chain applications introduces additional
challenges to end-users and developers, including usability
friction, lack of control over the cross-chain state, and security
issues, in the form of a more extensive attack vector. We
are witnessing the exploitation of a crescent attack vector on
decentralized protocols. To address this problem, we propose
Hephaestus.

Hephaestus is a system that can scale and generate
process models for arbitrary multi-chain use cases, filling a
gap in the existing literature. Hephaestus can be applied
over established blockchain interoperability protocols, serving
as a monitoring and audit layer, providing better response
capacity and thus security. Hephaestus is implemented as
a business logic plugin for Hyperledger Cactus. It can listen
to local transactions emitted from multiple blockchains and
derive ccmodels representing arbitrary cross-chain use cases.
A set of metrics and monitoring tools can be built on ccmodels,
allowing for a fine-grain audit of the protocol in question.



Our evaluation includes creating a cross-chain use case
composed of a pair of smart contracts and cross-chain logic
and executing several experiments to test the performance and
reliability of Hephaestus. We conclude that we have low
latency in generating ccmodels for the given use case and that
our tool can scale with the number of blockchains and cctxs.

We pave the way to enable a better user experience for
the end user and protocol operators by enabling the analysis,
monitoring, and optimization of ccmodels. Use cases such as
reconfiguring wallets across chains, uniformizing user inter-
face designs across chains, managing additional base layer
tokens for gas, doing tax reports, and analyzing cross-chain
maximal extractable value do not need to be complicated.

ACKNOWLEDGMENTS

This project was partially supported by The Linux Founda-
tion as part of the Hyperledger Summer Internships program
under the Visualization and Analysis of Cross-chain Trans-
actions project. We thank Kevin Liao, Iulia Mihaiu, Sabrina
Scuri, and Nuno Nunes for suggestions that improved this
paper. This work was partially supported by national funds
through Fundacdo para a Ciéncia e a Tecnologia (FCT) with
reference UIDB/50021/2020 (INESC-ID) and 2020.06837.BD,
and by the European Commission through the contract 952226
(BIG). Rafael was supported by Blockdaemon.

[1]

[2]

[3]

[4

=

[5]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey
on Blockchain Interoperability: Past, Present, and Future Trends,” ACM
Computing Surveys, vol. 54, no. 8, pp. 141, May 2021. [Online].
Available: http://arxiv.org/abs/2005.14282

R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Is My Perspective Better Than Yours? Blockchain
Interoperability with Views.” TechRxiv, Jun. 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_
Than_Yours_Blockchain_Interoperability_with_Views/20025857/1

B. Pillai, K. Biswas, Z. Hoéu, and V. Muthukkumarasamy, “Cross-
blockchain technology: integration framework and security assump-
tions,” IEEE Access, 2022, publisher: IEEE.

P. Robinson, “Survey of crosschain communications protocols,” Com-
puter Networks, vol. 200, p. 108488, 2021, publisher: Elsevier.

H. Qureshi, “Axelar, Bridges, and Blockchain Globalization,”
Jun. 2022. [Online]. Available: https://medium.com/dragonfly-research/
axelar-bridges-and-blockchain- globalization- 1 1ef3bbce9f1

D. Berenzon, “Blockchain Bridges,” Sep. 2021. [Online]. Available:
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac448

D. Auvrilionis and T. Hardjono, “Towards Blockchain-enabled Open
Architectures for Scalable Digital Asset Platforms,” Oct. 2021,
publisher: ArXiv. [Online]. Available: https://www.scienceopen.com/
document?vid=c60d84b9-911e-45a5-ab92-864ee24ec771

R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono, “HERMES:
Fault-Tolerant Middleware for Blockchain Interoperability,” Future Gen-
eration Computer Systems, Mar. 2021.
P. KidBold, “The Wormhole
Feb. 2022. [Online]. Available:
the-wormhole-bridge-attack-explained
C. Faife, “Wormhole cryptocurrency platform hacked for
$325 million after error on GitHub,” Feb. 2022.
[Online].  Available:  https://www.theverge.com/2022/2/3/22916111/
wormhole-hack-github-error-325-million- theft-ethereum-solana

Bridge Attack Explained,”
https://kaicho.substack.com/p/

Rekt, “Rekt - THORChain,” 2022. [Online]. Available: https:
/Iwww.rekt.news/

R. Behnke, “Explained: The Wormhole Hack (February
2022),” Feb. 2022. [Online]. Available: https://halborn.com/

explained-the-wormhole-hack-february-2022/

[13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

FreddieChopin, “FYI, the hacker who exploited Harmony bridge
for 100 M$ 3 days ago has already started sending
stolen ETH to Tornado Cash mixer,” Jun. 2022. [Online].
Available: www.reddit.com/r/CryptoCurrency/comments/vIt4xs/fyi_the_
hacker_who_exploited_harmony_bridge_for/

M.  Barrett, “Harmony’s  Horizon  Bridge  Hack,”  Jun.
2022. [Online]. Available: https://medium.com/harmony-one/
harmonys-horizon-bridge-hack- 1e8d283b6d66

C. Faife, “Nomad crypto bridge loses  $200  mil-
lion in ”chaotic” hack,” Aug. 2022. [On-
line]. Available: https://www.theverge.com/2022/8/2/23288785/

nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
The Block Research, “Largest DeFi exploits,” 2022. [Online].
Available: https://www.theblock.co/data/decentralized-finance/exploits/
largest-defi-exploits

The Straits Times, “Cryptocurrency-bridge hacks top $1.36
billion in little over a year,” The Straits Times, Apr.
2022. [Online]. Available: https://www.straitstimes.com/tech/tech-news/
cryptocurrency-bridge-hacks-top- 136-billion-in-little-over-a-year

N. Team, “The Road to Recovery,” Aug. 2022. [Online]. Available: https:
//medium.com/nomad-xyz-blog/the-road-to-recovery-6abeSeec8ff1

V. Buterin, “Vitalik Buterin on cross-chain bridges,” 2022. [Online].
Available: www.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_
the_efs_research_team_pt_7_07_january/hrngyk8/

H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman,
P. Somogyvari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior,
“Hyperledger Cactus Whitepaper,” Hyperledger Foundation, Tech. Rep.,
2020. [Online]. Available: https://github.com/hyperledger/cactus/blob/
master/docs/whitepaper/whitepaper.md

Dune, “Ethereum bridges TVL over time,” 2022. [Online]. Available:
https://dune.com/queries/118245

R. Belchior, S. Guerreiro, A. Vasconcelos, and M. Correia, “A
survey on business process view integration: past, present and future
applications to blockchain,” Business Process Management Journal,
vol. ahead-of-print, no. ahead-of-print, Jan. 2022. [Online]. Available:
https://doi.org/10.1108/BPMIJ- 11-2020-0529

W. Van Der Aalst, “Process mining: Overview and opportunities,” ACM
Transactions on Management Information Systems (TMIS), vol. 3, no. 2,
pp- 1-17, 2012, publisher: ACM New York, NY, USA.

J. Kiister, K. Ryndina, and H. Gall, “Generation of business process
models for object life cycle compliance,” in International Conference
on Business Process Management, vol. 4714 LNCS. Springer, Berlin,
2007, pp. 165-181.

R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software
Technology, vol. 50, no. 12, pp. 1281-1294, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584908000323
R. Belchior, L. Riley, T. Hardjono, A. Vasconcelos, and M. Correia, “Do
You Need a Distributed Ledger Technology Interoperability Solution?”
Techrxiv  18786527/1, Feb. 2022, publisher: TechRxiv. [Online].
Available: https://www.techrxiv.org/articles/preprint/Do_You_Need_a_
Distributed_Ledger_Technology_Interoperability_Solution_/18786527/1
J. Han, H. E, G. Le, and J. Du, “Survey on NoSQL database,” in 2011
6th International Conference on Pervasive Computing and Applications,
2011, pp. 363-366.

P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and
R. Sears, “Dedalus: Datalog in Time and Space,” in Datalog Reloaded,
ser. Lecture Notes in Computer Science, O. de Moor, G. Gottlob,
T. Furche, and A. Sellers, Eds. Berlin, Heidelberg: Springer, 2011,
pp. 262-281.

T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou, “Datalog and
Recursive Query Processing,” Foundations and Trends® in Databases,
vol. 5, no. 2, pp. 105-195, Nov. 2013, publisher: Now Publishers,
Inc. [Online]. Available: https://www.nowpublishers.com/article/Details/
DBS-017

L. Clarke, “How do we solve bitcoin’s carbon problem?” The
Observer, Jan. 2022. [Online]. Available: https://www.theguardian.com/
technology/2022/jan/30/how-do-we-solve-bitcoins-carbon-problem

T. Q. Tezos, “Proof of Work vs. Proof of Stake: the Ecological
Footprint,” Mar. 2021. [Online]. Available: https://medium.com/tqtezos/
proof-of-work-vs-proof-of-stake-the-ecological - footprint-c58029faee44
0. UsS EPA, “Greenhouse Gases Equivalen-
cies Calculator - Calculations and References,”


http://arxiv.org/abs/2005.14282
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/1
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/1
https://medium.com/dragonfly-research/axelar-bridges-and-blockchain-globalization-11ef3bbce9f1
https://medium.com/dragonfly-research/axelar-bridges-and-blockchain-globalization-11ef3bbce9f1
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8
https://www.scienceopen.com/document?vid=c60d84b9-911e-45a5-ab92-864ee24ec771
https://www.scienceopen.com/document?vid=c60d84b9-911e-45a5-ab92-864ee24ec771
https://kaicho.substack.com/p/the-wormhole-bridge-attack-explained
https://kaicho.substack.com/p/the-wormhole-bridge-attack-explained
https://www.theverge.com/2022/2/3/22916111/wormhole-hack-github-error-325-million-theft-ethereum-solana
https://www.theverge.com/2022/2/3/22916111/wormhole-hack-github-error-325-million-theft-ethereum-solana
https://www.rekt.news/
https://www.rekt.news/
https://halborn.com/explained-the-wormhole-hack-february-2022/
https://halborn.com/explained-the-wormhole-hack-february-2022/
www.reddit.com/r/CryptoCurrency/comments/vlt4xs/fyi_the_hacker_who_exploited_harmony_bridge_for/
www.reddit.com/r/CryptoCurrency/comments/vlt4xs/fyi_the_hacker_who_exploited_harmony_bridge_for/
https://medium.com/harmony-one/harmonys-horizon-bridge-hack-1e8d283b6d66
https://medium.com/harmony-one/harmonys-horizon-bridge-hack-1e8d283b6d66
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
https://www.theblock.co/data/decentralized-finance/exploits/largest-defi-exploits
https://www.theblock.co/data/decentralized-finance/exploits/largest-defi-exploits
https://www.straitstimes.com/tech/tech-news/cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year
https://www.straitstimes.com/tech/tech-news/cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year
https://medium.com/nomad-xyz-blog/the-road-to-recovery-6abe5eec8ff1
https://medium.com/nomad-xyz-blog/the-road-to-recovery-6abe5eec8ff1
www.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
www.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
https://github.com/hyperledger/cactus/blob/master/docs/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/master/docs/whitepaper/whitepaper.md
https://dune.com/queries/118245
https://doi.org/10.1108/BPMJ-11-2020-0529
https://www.sciencedirect.com/science/article/pii/S0950584908000323
https://www.techrxiv.org/articles/preprint/Do_You_Need_a_Distributed_Ledger_Technology_Interoperability_Solution_/18786527/1
https://www.techrxiv.org/articles/preprint/Do_You_Need_a_Distributed_Ledger_Technology_Interoperability_Solution_/18786527/1
https://www.nowpublishers.com/article/Details/DBS-017
https://www.nowpublishers.com/article/Details/DBS-017
https://www.theguardian.com/technology/2022/jan/30/how-do-we-solve-bitcoins-carbon-problem
https://www.theguardian.com/technology/2022/jan/30/how-do-we-solve-bitcoins-carbon-problem
https://medium.com/tqtezos/proof-of-work-vs-proof-of-stake-the-ecological-footprint-c58029faee44
https://medium.com/tqtezos/proof-of-work-vs-proof-of-stake-the-ecological-footprint-c58029faee44

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]
[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Aug. 2015. [Online].  Available: https://www.epa.gov/energy/
greenhouse- gases-equivalencies-calculator-calculations-and-references

1. Mihaiu, R. Belchior, S. Scuri, and N. Nunes,
“A Framework to Evaluate Blockchain Interoperability So-
lutions,”  TechRxiv,  Tech. Rep., Dec. 2021. [Online].

Available: https://www.techrxiv.org/articles/preprint/A_Framework_to_
Evaluate_Blockchain_Interoperability_Solutions/17093039

B. Putz and G. Pernul, “Detecting Blockchain Security Threats,” in 2020
IEEE International Conference on Blockchain (Blockchain), Nov. 2020,
pp- 313-320.

A. Berti, S. J. Van Zelst, and W. van der Aalst, “Process mining for
python (PM4Py): bridging the gap between process-and data science,”
arXiv preprint arXiv:1905.06169, 2019.

W. M. van der Aalst and A. Berti, “Discovering object-centric Petri nets,”
Fundamenta informaticae, vol. 175, no. 1-4, pp. 1-40, 2020, publisher:
I0S Press.

Chainlink, “Cross-Chain Interoperability Protocol (CCIP) | Chainlink,”
2022. [Online]. Available: https://chain.link/cross-chain

J. Zhang, J. Gao, Y. Li, Z. Chen, Z. Guan, and Z. Chen, “Xscope:
Hunting for Cross-Chain Bridge Attacks,” Aug. 2022, arXiv:2208.07119
[cs]. [Online]. Available: http://arxiv.org/abs/2208.07119

M. Hargreaves, T. Hardjono, and R. Belchior, “Open Digital
Asset Protocol draft 02,” Internet Engineering Task Force, Tech.
Rep., 2021. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-hargreaves-odap-02

R. Belchior, M. Correia, and T. Hardjono, “Gateway Crash Recovery
Mechanism draft v1,” IETF, Tech. Rep., 2021. [Online]. Available:
https://datatracker.ietf.org/doc/draft-belchior- gateway-recovery/

A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in 2019 IEEE Symposium on Security and Privacy (SP). 1EEE,
2019, pp. 193-210.

“Dune.” [Online]. Available: https://dune.com/home

Chainanalysis, “The Blockchain Data Platform - Chainalysis,” 2022.
[Online]. Available: https://www.chainalysis.com/

Metla, “Metla - the ultimate crypto dashboard,” 2022. [Online].
Available: https://metla.com/

Moralis, “Moralis The Web3 Development Workflow,” 2022. [Online].
Available: https://moralis.io/

Rokti, “Rokti portfolio tracker,” 2022. [Online]. Available: https:
/frotki.com

Certik, “CertiK Blockchain Security Leaderboard,” 2022. [Online].
Available: https://www.certik.com

Token Flow, “Token Flow Insights,” 2022.
https://tokenflow.live

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

B. Putz, F. Bohm, and G. Pernul, “HyperSec: Visual Analytics for
blockchain security monitoring,” in IFIP International Conference on
ICT Systems Security and Privacy Protection. Springer, 2021, pp. 165—
180.

P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A Detailed and Real-
Time Performance Monitoring Framework for Blockchain Systems,” in
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), May 2018,
pp. 134-143.

M. Bartoletti, S. Lande, L. Pompianu, and A. Bracciali, “A general
framework for blockchain analytics,” in Proceedings of the 1st Workshop
on Scalable and Resilient Infrastructures for Distributed Ledgers, 2017,
pp. 1-6.

D. N. Dillenberger, P. Novotny, Q. Zhang, P. Jayachandran, H. Gupta,
S. Hans, D. Verma, S. Chakraborty, J. Thomas, M. Walli, and others,
“Blockchain analytics and artificial intelligence,” IBM Journal of Re-
search and Development, vol. 63, no. 2/3, pp. 5-1, 2019, publisher:
IBM.

N. Tovanich, N. Soulié, N. Heulot, and P. Isenberg, “An Empirical
Analysis of Pool Hopping Behavior in the Bitcoin Blockchain,” in
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), May 2021, pp. 1-9.

B. Nasrulin, M. Muzammal, and Q. Qu, “Chainmob: Mobility analytics
on blockchain,” in 2018 19th IEEE International Conference on Mobile
Data Management (MDM). 1EEE, 2018, pp. 292-293.

[Online]. Available:

[56]

[57]

(58]

[59]

[60]

R. Hobeck, C. Klinkmiiller, H. Bandara, I. Weber, and W. M. van der
Aalst, “Process mining on blockchain data: a case study of Augur,” in
International conference on business process management. Springer,
2021, pp. 306-323.

M. Miiller and P. Ruppel, “Process Mining for Decentralized Ap-
plications,” in 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON), Apr. 2019, pp. 164-169.
C. Klinkmiiller, A. Ponomarev, A. B. Tran, I. Weber, and W. van der
Aalst, “Mining Blockchain Processes: Extracting Process Mining Data
from Blockchain Applications,” in Business Process Management:
Blockchain and Central and Eastern Europe Forum, ser. Lecture Notes
in Business Information Processing, C. Di Ciccio, R. Gabryelczyk,
L. Garcia-Baiiuelos, T. Hernaus, R. Hull, M. Indihar §temberger, A. K&,
and M. Staples, Eds. Cham: Springer International Publishing, 2019,
pp- 71-86.

R. Miihlberger, S. Bachhofner, C. Di Ciccio, L. Garcia-Bafiuelos, and
O. Lopez-Pintado, “Extracting Event Logs for Process Mining from
Data Stored on the Blockchain,” in Business Process Management
Workshops, ser. Lecture Notes in Business Information Processing,
C. Di Francescomarino, R. Dijkman, and U. Zdun, Eds. Cham: Springer
International Publishing, 2019, pp. 690-703.

F. Corradini, F. Marcantoni, A. Morichetta, A. Polini, B. Re, and
M. Sampaolo, “Enabling Auditing of Smart Contracts Through Process
Mining,” in From Software Engineering to Formal Methods and Tools,
and Back: Essays Dedicated to Stefania Gnesi on the Occasion
of Her 65th Birthday, ser. Lecture Notes in Computer Science,
M. H. ter Beek, A. Fantechi, and L. Semini, Eds. Cham: Springer
International Publishing, 2019, pp. 467—480. [Online]. Available:
https://doi.org/10.1007/978-3-030-30985-5_27


https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.techrxiv.org/articles/preprint/A_Framework_to_Evaluate_Blockchain_Interoperability_Solutions/17093039
https://www.techrxiv.org/articles/preprint/A_Framework_to_Evaluate_Blockchain_Interoperability_Solutions/17093039
https://chain.link/cross-chain
http://arxiv.org/abs/2208.07119
https://datatracker.ietf.org/doc/html/draft-hargreaves-odap-02
https://datatracker.ietf.org/doc/html/draft-hargreaves-odap-02
https://datatracker.ietf.org/doc/draft-belchior-gateway-recovery/
https://dune.com/home
https://www.chainalysis.com/
https://metla.com/
https://moralis.io/
https://rotki.com
https://rotki.com
https://www.certik.com
https://tokenflow.live
https://doi.org/10.1007/978-3-030-30985-5_27

	Hephaestus: Modelling, Analysis, and Performance Evaluation of Cross-Chain Transactions
	Introduction
	Background
	Process Mining Background and Applications
	Blockchain and Interoperability

	Cross-chain Transactions
	Cross-Chain Models
	Properties
	Metrics

	Hephaestus: a cross-chain model generator
	System Model
	Cross-Chain Model Generation
	Identifying non-conformance

	Implementation
	Connectors
	Test ledgers
	Smart Contracts
	Hephaestus

	Evaluation
	Baseline: Dummy Use Case with Test Receipts
	Use Case: asset transfer across heterogeneous networks
	Baseline Vs. Use Case
	Identifying Misconformance
	Qualitative Analysis

	Related Work
	Concluding Remarks
	References

