
CBDC bridging between Hyperledger Fabric and permissionedCBDC bridging between Hyperledger Fabric and permissioned
EVM-based blockchainsEVM-based blockchains
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-NC-SA 4.0

SUBMISSION DATE / POSTED DATE

03-01-2023 / 09-01-2023

CITATION

Augusto, André; Belchior, Rafael; Vasconcelos, André; Kocsis, Imre; László, Gönczy (2023): CBDC bridging
between Hyperledger Fabric and permissioned EVM-based blockchains. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.21809430.v1

DOI

10.36227/techrxiv.21809430.v1

https://www.techrxiv.org
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://dx.doi.org/10.36227/techrxiv.21809430.v1


CBDC bridging between Hyperledger Fabric and
permissioned EVM-based blockchains

André Augusto∗ Rafael Belchior∗† Imre Kocsis‡ László Gönczy‡ André Vasconcelos∗
∗INESC-ID and Instituto Superior Técnico †Blockdaemon Ltd ‡Dept. of Measurement and Inf. Systems, BME

Abstract—The last few years have seen a steep increase
in blockchain interoperability research. Most solutions connect
public blockchains; hence, the main cross-chain use case is token
transfer. By-design platform transparency, tamper-resistance,
and auditability make blockchains an infrastructure candidate
for Central Bank Digital Currencies (CBDCs), but bridging
CBDCs is an important missing piece in general. In this paper, we
leverage an asset transfer protocol, ODAP/SATP, to define an ex-
tendable and dependable blockchain interoperability middleware
that can bridge CBDC from Hyperledger Fabric to EVM-based
permissioned blockchains. The key interoperation enabler in the
solution is a shared asset definition enforced by both sides of
the bridge, accompanied by a mapping between Fabric Identities
and Ethereum addresses for Identity management. We implement
our design for the CBDC use case utilizing Hyperledger Cactus.
Through a preliminary performance evaluation, we show that the
underlying ledgers heavily influence the latency of the solution,
not the bridging components.

Index Terms—CBDC, Interoperability, Hyperledger Besu, Hy-
perledger Fabric, ODAP/SATP

I. INTRODUCTION

In general, interoperability across different distributed
ledgers, maintained on different blockchain networks, refers
to the ability to pass messages securely across smart contracts
which manage the content of the distributed ledgers. Moving
”units of value” in a predetermined way from one Distributed
Ledger Technology (DLT) to another to support asset transfer
and exchange scenarios is one aspect of blockchain and DLT
interoperability.

Enabling the usually two-way movement of cryptoassets
between blockchains – ”bridging” – recently emerged as a
key integration requirement and interoperability pattern in
the unpermissioned, open-access blockchain world. Consortial
distributed ledgers – ones with consensus participation tied
to membership in a ”consortium” of organizations and con-
trols on network access – are beginning to follow. Important
emerging use cases include temporarily moving money and
money-like instruments, such as a Central Bank Digital Cur-
rency (CBDC)[15], from an authoritative, high-performance
consortial distributed ledger to others dedicated to specific
industrial and enterprise collaborations. In their bridged-out
form, these instruments can serve as legal, non-volatile, and
fungible payment and settlement vehicles for smart contracts
– without impacting the performance of the authoritative asset
ledger and preserving the collective business confidentiality of
the collaborating parties.

Even for the unpermissioned blockchain world, cross-chain
interoperability is still an emerging area (see, e.g., the survey

[12]). There are still significant gaps in the necessary proper
formal treatment of approaches, including the characterization
of interoperability behavior ([9] is an important step forward)
and an overall lack of standards.

Additionally, cross-consortial ledger bridging can have a
fundamentally different trust model and requirement set than
bridges for the unpermissioned world, especially for such as-
sets as CBDCs, which will have heavily regulated operational
models.

A. Interoperability for an ecosystem of CBDC applications

”A CBDC is a digital payment instrument, denominated
in the national unit of account, that is a direct liability of
the central bank”[15], complementing cash and traditional
reserve or settlement accounts. Although there are only a few
CBDCs already in production, with limited rollout or in minor
economies, in recent years, most central banks have performed
extensive research and experiments on the topic in preparation
for issuing a CBDC in the future.

Whether the authoritative ledger of future CBDCs will
be decentralized or centralized is still a subject of debate;
experiments and prototypes exist for both. By-design tamper-
resistance, auditability, and fault-tolerance are strong sup-
porting arguments for permissioned distributed ledger-based
implementations, even despite performance assurance, privacy,
and operating consortium diversity challenges.

Blockchain-based applications implementing services for a
given business domain (like logistics, retail, insurance, etc.)
need a legally recognized vehicle for payment and settlement –
and in many cases, same-chain CBDC will be the best option,
when it becomes available [8].

Openly accessible documentation on the CBDC experiments
and prototypes of central banks, such as work streams in
the Digital Euro experiments [16], [7], strongly suggests that
the core CBDC ledger will not provide wide-scale support
for smart contracts. Instead, the application of interoperabil-
ity solutions – classic payment initiation triggers, bridging,
and payment channels – can be expected. For CBDC-using
decentralized application ecosystems, arguably, bridging is
the optimal solution, as it seamlessly enables performing the
financial operations encoded in smart contracts.

In a wider context, it is also to note that the Multi-CBDC
project (mCBDC [5]) of the Bank of International Settlements
(BIS) demonstrated the usage of bridging mechanism in the
context of wholesale (available only to financial institutions)
CBDC and cross-border transactions.



B. Bridging CBDCs
In the cryptoasset world, bridging is predominantly based

on two-way pegs, where the assets temporarily ”moved” to
another ledger are actually kept in cryptographically secured
custody on the source chain until they are brought back. This
approach is readily applicable for CBDC bridging between
permissioned distributed ledgers, albeit with caveats regarding
the threat model and necessary security guarantees. We sum-
marize the key differences from permissionless approaches as
follows:

• The party or consortium of parties performing the bridg-
ing can easily be sufficiently trustable and is, or are,
incentivized by non-crypto means (for CBDC, they are
expected to be regulated and auditable entities).

• Trust between the source and target ledgers can be either
in place as a starting premise, or is much easier to
achieve; e.g., by majority or threshold signature schemes
over the known consensus-participating parties of the
ledger which serves as a transaction source.

• As source and target ledgers typically employ determin-
istic transaction finality, questions of forks, chain splits,
and chain dominance do not emerge as an issue.

• On the other hand, the atomicity, consistency, integrity,
and durability of the asset transfer itself – as defined by
[11] – gain primary importance.

Integration technologies are emerging to host solutions
tailored to this setting, which, in comparison to cryptocurrency
bridging solutions, can translate the different trust models to
lower latency, significantly lower protocol complexity, and
the absence of either further trust requirements or the in-
troduction of cryptoeconomic incentives. Important examples
include Hyperledger Cactus [26] and Weaver [2]. Work is
also underway – within the scope of the Internet Engineering
Task Force (IETF) - to define standard protocols for asset
transfers with ACID guarantees between trusted ledgers in
ODAP/SATP[20], which defines an asset transfer protocol
between gateways attached to trusted ledgers. There is also
an ACID property-preserving prototype implementation for
Cactus, with the source and target gateways deployed in
a Cactus network. However, as of this writing, no mature,
general-purpose bridging solution is available for fungible
asset transfers between permissioned ledgers.

C. Contribution
In this paper, as a novel contribution, we present the design

and prototype implementation of a fungible asset bridge be-
tween Hyperledger Fabric and Hyperledger Besu (an Ethereum
client implementation) operated by a trusted (regulated) party.

Our Fabric/EVM pairing is a representative case; many
decentralized CBDC experiments apply Fabric and other ded-
icated ”enterprise” blockchain technologies for CBDC im-
plementation, while Ethereum technology is widely used for
experiments as well as production systems in most application
domains.

We build on the ODAP/SATP implementation by creating
the Fabric and EVM (Ethereum Virtual Machine) side smart

contract facilities for fungible asset bridging from Fabric to
the EVM via two-way pegging, preserving the fault tolerance
provided by the underlying protocol.

In our design, a single bridging entity operates both the
source and target gateways. This eliminates the need for the
still evolving lookup and discovery aspect of ODAP/SATP,
necessary for gateway peering; and establishes a single, po-
tentially regulated party who can be tasked with executing
additional policies on ”bridging out” and ”bridging back”
assets.

Executed policies can range from no-touch observation,
such as creating audit trails, to compliance enforcement – e.g.,
halting the bridge-back operation on activities in the sidechain
which are suspicious from a regulatory compliance point of
view (the target ledger is trusted, not its users). Policies can
be deployed in Cactus, which is purpose-built to host such
”business logic”, and are expected to be especially important
in the CBDC context.

As transparent decentralized transaction validator capabili-
ties are being worked on for Cactus, we expect our design to
almost automatically gain support for permissioned distributed
bridging in the near future – by the virtue of platform
developments.

The rest of this paper is structured as follows. Section II
presents the necessary technical background. Section III pro-
vides an overview of existing relevant blockchain interop-
erability approaches. Our solution design is introduced in
Section IV. Sections V and VI present the implementation
and a preliminary evaluation of the solution. We close out the
paper with concluding remarks.

II. BACKGROUND

We provide an overview of the technical background the
paper builds on. We briefly introduce three related Hyperledger
projects: Fabric, Besu, and Cactus; and describe ODAP/SAT,
an asset transfer protocol between trusted blockchain net-
works.

A. Hyperledger Fabric

Hyperledger Fabric [3] is an open-source project under the
Hyperledger umbrella that enables the creation of permis-
sioned blockchains. Permissioned blockchains are usually used
by organizations (or consortiums) that demand data sharing in
such a way that all nodes are known and identified, contrary
to widely used public blockchains, like Bitcoin [27]. Addi-
tionally, Fabric enables the deployment of smart contracts,
called chaincode, using a variety of programming languages
including JavaScript, Java, and Go. Fabric end-to-end transac-
tion latency and throughput are engineerable system properties
and can go as low as hundreds of milliseconds and as high as
thousands of transactions per second.

B. Hyperledger Besu

Hyperledger Besu (or just Besu) is an open-source Ethereum
client that is distinguished by its ability to create public as well



as private networks. Its use is directed to the enterprise envi-
ronment, supporting a wide range of consensus mechanisms
(e.g., PoW, PoA, and IBFT).

C. Hyperledger Cactus

Hyperledger Cactus [26] is a project in the Hyperledger
ecosystem. Cactus is a blockchain integration framework that
takes further steps when it comes to interconnecting enterprise-
grade blockchain networks. It accomplishes that by offering a
pluggable architecture that makes possible the execution of
operations on as many networks as needed, through the usage
of Business Logic Plugins (BLP) and Ledger Connectors.
BLPs capture the necessary business logic for a certain ap-
plication or protocol, whereas ledger connectors expose APIs
facilitating the interaction with specific ledgers. For instance,
the Fabric Ledger Connector provides an API so that any BLP
can interact with an underlying Hyperledger Fabric network.

Recently, Cactus and Weaver [2], a Hyperledger Lab ex-
plained in Section III, have decided to merge their projects to
form Hyperledger Cacti. Nonetheless, we refer to the project
as Cactus given that the merge was not performed yet.

D. ODAP/SATP

The Secure Asset Transfer Protocol [20] (the naming is
transitioning from Open Digital Asset Protocol) is an asset
transfer protocol between two networks, based on relays [12],
relying on trusted gateways to execute the protocol.

This gateway-based architecture can be compared with
the concept of Autonomous Systems when the Internet was
born [19]. At the time, the solution proposed to scale up and
interconnect these networks was to implement border gateway
routers, providing an entry point to each network. We can
think of blockchains as the networks and gateways as the
routers; these gateways run the Secure Asset Transfer Protocol,
acting as the egress/ingress for data. A major advantage of this
architecture is that the underlying ledgers do not need any kind
of modification, thus making it ledger-agnostic.

In ODAP/SATP, client applications are responsible for com-
munication with their local gateway in order to initiate a
gateway-to-gateway asset transfer. In essence, the protocol is
divided into three main phases/flows1:

1) Transfer Initiation Flow: gateways come to an agree-
ment regarding the asset being transferred and exchange
information on the legal frameworks under which they
operate;

2) Lock-Evidence Verification flow: the asset being trans-
ferred is locked (no more transactions targeting the asset
are approved) in the source chain and the proof is sent
to the sidechain gateway;

3) Commitment Establishment Flow: both gateways com-
mit the changes in their local ledgers, which corresponds
to the deletion/burning of the asset in the source chain
and the creation/minting of its representation in the
sidechain.

1https://github.com/CxSci/IETF-SATP/blob/main/Figures/
gateway-model-flows-v10PNG.png, accessed on October 15, 2022

For the time being, gateways are assumed to be trusted.
In order to relax this trust assumption, progress has been
made paving the way for trustless gateways, leveraging the
concept of blockchain views [10], [1], [28]. In this case,
gateways exchange verifiable proofs to attest to the success
of the operations performed in each ledger. On the other
hand, even though the implementation represents a non-trivial
solution, one can think of securing gateways at the hardware
level, through the deployment of such infrastructure in Trusted
Execution Environments (TEE), such as Intel SGX [25] (a
solution based on TEE to enable interoperability is [24]).

SATP is currently implemented in Hyperledger Cactus in
the form of a Business Logic Plugin, along with its crash
recovery mechanism [18] which provides recovery and roll-
back procedures in the presence of crashes. These procedures
specify the steps necessary for a crashed gateway to resume
the execution of the protocol, and in the worst case scenario
rollback the execution – given that a DLT is an append-only
data structure, rolling back the protocol corresponds to issuing
transactions with the contrary effect of the ones already issued.
For accountability, auditability, and integrity purposes, the
implementation uses a decentralized log storage infrastructure
(an IPFS network [14]), where gateways publish the proofs
necessary for a successful asset transfer.

III. RELATED WORK

In this section we present some solutions focused on
interoperability between blockchains considering our CBDC
bridging use case. We lay out the most representative solutions,
hence, this list is not meant to be exhaustive.

An extensive survey on blockchain interoperability [12]
classifies interoperability solutions into three categories:
1) Public Connectors provide interoperability between public
blockchains – e.g., sidechains, notary schemes, and HTLCs;
2) Blockchains of Blockchains pave the way for the “creation
of application-specific blockchains that interoperate with each
other” [12] on top of existing infrastructure – e.g., Polka-
dot [32] and Cosmos [22]; 3) Hybrid Connectors encompasses
the solutions that are not suitable to any of the previous two
classes, mainly the ones directed to both public and private
environments.

There are multiple trustless and privacy securing bridging
solutions such as Falazi et al. [17], A. Xiong et al. [34],
Horizon [23], Stone D. [31], and Bridging Sapling [29]. These
solutions, integrated into the Public Connectors category,
are either focused on permissionless blockchains supporting
cryptocurrencies or do not have working implementations of
the protocols. We also discard solutions that require both
ledgers to have access to each other (e.g. SPV-like solutions),
or that allow any user to become a bridging validator given the
permissioned nature of our use-case (e.g., a group of validators
running a consensus mechanism in order to accept/reject a
cross-chain transaction, where anyone can run a node [34]).

Under the Hybrid Connectors [12] category, we find the
Trusted Relay solutions where a trusted relay redirects packets

https://github.com/CxSci/IETF-SATP/blob/main/Figures/gateway-model-flows-v10PNG.png
https://github.com/CxSci/IETF-SATP/blob/main/Figures/gateway-model-flows-v10PNG.png


TABLE I
COMPARISON BETWEEN SOLUTIONS THAT SUPPORT PERMISSIONED

NETWORKS. TRANSFERS AND EXCHANGES ARE BETWEEN FABRIC AND
EVM BASED BLOCKCHAINS

Provides
Infrastructure

Asset
Transfer

Asset
Exchange

No changes
to ledgers

Interledger ✓ ? ✓ ✓
Weaver ✓ ✗ ✓ ✓
Cactus ✓ ✓ ✓ ✓
YUI ✓ ✓ ✓ ✗

in-between blockchains. Currently, there is only one im-
plementation of a bridge between Fabric and EVM-based
blockchains created by Datachain and NTT Data in coopera-
tion. The bridge is created using the YUI Hyperledger Labs
project2, that leverages the Inter-Blockchain Communication
protocol (IBC). The authors leverage an SPV-like architecture
trusting on a relayer to forward the block headers of each
blockchain as packets. Since both chains need IBC support,
the necessity of making changes to the underlying ledgers, to
support IBC, constitutes a downside of the solution. Addition-
ally, Interledger [33] introduces a relay architecture similar
to Cactus’s that provides the underlying infrastructure for
interoperability; however, the protocol to realize asset transfers
was not found.

Weaver [2] is a Hyperledger Labs project that proposes
a generalized protocol for data transfer within permissioned
networks using trusted relay services. Relay services are
responsible for representing a blockchain and running a
protocol to transfer data between them. ODAP/SATP [20]
is a similar solution where the relays are called gateways,
providing a standardized communication protocol between
gateways. While Weaver is focused on both the infrastructure
and the communication protocol, ODAP/SATP is focused only
on the standardization of the latter. Weaver only supports
transfers of assets between Fabric and Corda [21], thus, for
now, not suitable for our use case. Hence, we opt for using
the ODAP/SATP implementation in Cactus as the underlying
protocol and infrastructure for our solution.

Table I presents a comparison between these solutions.
Interledger and Hyperledger Cactus are positioned as the best
solutions that adhere to our requirements. Their architecture
is very similar, however, we could not find the underlying
protocol used for the execution of asset transfers. Also, given
that Cactus presents a more mature project and includes
an implementation of a future standard for communication
between networks, we choose Cactus as the base for our
solution.

IV. SOLUTION DESIGN

We propose a bridging approach between Fabric and Besu
using Cactus and ODAP/SATP. In this section, we present
our bridging model and describe the components of the
architecture implementing the approach (see Figure 1).

2https://github.com/hyperledger-labs/yui-docs,
accessed on October 15, 2022

A. Bridging Model

Any cross-chain bridge must have the means to trans-
late data between blockchains. Technologically heterogeneous
networks pose special challenges, such as nontrivial harmo-
nization of protocol finalities due to different architectures
and consensus mechanisms, or harmonizing the syntactic
and semantic differences between communication interfaces
and APIs. Bridging Fabric and Besu is certainly a hetero-
geneous setup: Besu is an Ethereum client (though we as-
sume deterministic finality consensus), while Fabric uses a
special execute-order-validate deterministic finality consensus
approach [3] and a transaction and identity model radically
different from Ethereum.

As justified in Section III, we base the architecture of the
solution on Hyperledger Cactus. Cactus was envisioned to
enable interoperability through a set of nodes (Cactus Nodes)
that can together form a consortium and validate cross-chain
transactions by running a consensus protocol [26]. It can
be thought of as a relay solution that works in a trusted
environment working towards a trustless setting in the future.
Although the consortium feature is not yet fully available in
the project, it is planned for the near future, therefore, for now,
we leverage a single Cactus Node.

Each Cactus Node can be composed of multiple API
Servers, hence our solution comprises two (Figure 1), each
targeted to a different side of the bridge. We make use of
both the Fabric and the Besu ledger connectors34 as a means
to access the ledgers; IPFS connectors allowing communi-
cation with an IPFS network that, as explained before, acts
as decentralized log storage for integrity, accountability, and
auditability purposes; finally, the ODAP/SATP business logic
plugin5. The ODAP/SATP plugin acts as our gateway and
exposes an API that is accessible to the end users to trigger
bridging operations – bridging out or bridging back CBDC.

This bridging model can be easily extended to other ledgers
with minor efforts, using ODAP / SATP, given that most ex-
isting blockchains support the deployment of smart contracts.

B. CBDC and Common Asset definitions

The integration of both Fabric and Besu can be achieved
through either the definition of an asset that can be in-
terpreted by both parties or through the development of a
translation algorithm designed specifically for the required
bridge. Because of its flexibility and simplicity, we opt for
the first alternative; therefore, we build 1) a specification for
the CBDC in which tokens are represented in each ledger
through chaincode/smart contracts; and 2) a common asset
definition called Asset Reference that represents a certain
amount of CBDC to be bridged. This can be thought of as
the piece that enables interoperability between both chains

3https://github.com/hyperledger/cactus/tree/main/packages/
cactus-plugin-ledger-connector-fabric, accessed on October 15, 2022

4https://github.com/hyperledger/cactus/tree/main/packages/
cactus-plugin-ledger-connector-besu, accessed on October 15, 2022

5https://github.com/hyperledger/cactus/tree/main/packages/
cactus-plugin-odap-hermes, accessed on October 15, 2022

https://github.com/hyperledger-labs/yui-docs
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-fabric
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-fabric
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-besu
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-besu
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-odap-hermes
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-odap-hermes


HYPERLEDGER 
FABRIC


CONNECTOR

IPFS

CONNECTOR

HYPERLEDGER BESUHYPERLEDGER FABRIC

BESU

ODAP


GATEWAY

FABRIC 

ODAP


GATEWAY

HYPERLEDGER CACTUS 
NODE

SATP/

ODAP

API SERVER 1 API SERVER 2

CBDC

CHAINCODE

ASSET REFERENCE

CHAINCODE

IPFS

CHANNEL 1

ORG 1 / Finantial Institution ORG 2 / Bridge Entity

CharlieAlice

Bob’s

Fabric ID

Bob

ASSET REFERENCE

SMART CONTRACT

CBDC

SMART CONTRACT

Alice’s

Fabric ID

Charlie’s

Fabric ID

Bob’s

Account

Alice’s

Account

Charlie’s

Account

HYPERLEDGER 
BESU


CONNECTOR

IPFS

CONNECTOR

Fig. 1. Architecture of the solution – A bridge between Fabric and Besu using ODAP’s implementation in Cactus

making the bridging operation possible. Thus, ODAP/SATP
will not interact directly with the CBDC, but instead, with
asset references.

The reasons for the creation of this layer are threefold.
Firstly, the bridge is not bound to a specific CBDC imple-
mentation, thus serving as an interface; it protects against
double-spending given that it offers a locking mechanism,
hence, a client can not initiate two bridging operations on
the same asset at the same time. Finally, it allows the storage
of information about the CDBC locked in the source chain in
another data structure.

In each ledger, the deployed smart contracts adhere to a
specified mapping between the ledger-specific asset definition
and this common asset definition of the bridging solution.

The Asset Reference and the CBDC smart contracts in-
teroperate bidirectionally (explored in Section V-B) – when
bridging out and bridging back CBDC. Hence, given these
interactions, the Asset Reference smart contracts’ access con-
trol is defined by only accepting requests from the bridge and
the CBDC smart contract.

Each asset reference must be unique within the Asset Refer-
ence chaincode and smart contract respectively. The identifier
is used exclusively by the clients to initiate bridging operations
on the CBDC escrowed by them. The recipient of the Asset
Reference (the sidechain when bridging out, and the source
chain when bridging back), is responsible for translating the
Asset Reference object into function calls, not needing the
identifier. Given that a user can initiate two simultaneous
bridge requests on the same Asset Reference, there must be a
boolean indicating whether the asset reference is being bridged
or not. If isLocked is true, simultaneous requests must be
rejected. The amount field indicates the amount of CBDC
represented by this Asset Reference. It matches the amount
of CBDC put in custody by the final user. This final user
is the owner of the Asset Reference. This is at the same
time the sender and the recipient of the CBDC (explained
in Section IV-C). The tokenID field is the ID of the token that
is represented by this asset. This is due to the flexibility of the
solution, whether multiple CBDC definitions can be supported

(e.g. a digital euro or a digital USD).

C. Asset Transfer Model

Let us denote userA’s Fabric Identity (FI) by IdA, and its
Ethereum address as AddrA. We represent the bridging out
of X CBDC from user A FI in Fabric to user A’s address in
Besu as IdA

X CBDC−−−→ AddrA. The bridge back of X CBDC
from the user A’s address in Besu to the user A’s FI in Fabric
is represented as AddrA

X CBDC−−−→ IdA.
Our ultimate goal is to perform a successful transfer of

CBDC from a Hyperledger Fabric to a Hyperledger Besu
network, however, we haven’t defined yet what are the re-
quirements that must be met for such an asset transfer to be
deemed successful. We summarize them as follows:

1) the bridging out of X CBDC represented as IdA
X CBDC−−−→

AddrB , is only valid if user A in the source ledger
corresponds to User B on the target ledger;

2) the bridging back of X CBDC represented as
AddrA

X CBDC−−−→ IdB is only valid if user A in the source
ledger corresponds to User B on the target ledger;

3) the bridging out of X CBDC represented as IdA
X CBDC−−−→

AddrA, is only valid if X CBDC were locked in Fabric
and cannot be double spent in the origin chain (two-way
pegging mechanism);

Note that in ODAP/SATP, the asset reference in the source
chain is deleted before the creation of its representation in the
target chain; however, the amount of CBDC it represents is
not, it is maintained in locked/escrowed in the original one. In
fact, it remains in secured custody until a user bridges back
the CBDC to the source chain again – it might not be the same
user because it can change hands in the sidechain. The amount
of CBDC that is put in custody is constantly tracked, and it is
possible (for the authorized members of the consortium – e.g.,
the Central Bank) to know at any time how much CBDC was
bridged out at any moment. This plays a fundamental part in
future auditability procedures.

D. Failure Model

Since our solution is built on top of the existing
ODAP/SATP, it inherits its properties. Therefore, our CBDC



bridging solution guarantees atomicity, consistency, integrity,
durability, and termination properties [11]. In addition, it
also provides the logging infrastructure for future auditability
procedures [18]. The protocol is not concerned with Byzantine
(arbitrary) behavior from gateways; it supports crash faults
and there is a crash recovery mechanism that comprises both
a self-healing mode – where one gateway recovers by itself
– or a primary-backup mode – one gateway is replaced by
an authorized backup gateway. In the worst-case scenario, the
rollback procedure is triggered if there is no communication
beyond a defined timeout. An earlier analysis of the recovery
and rollback procedure showed that the rollback is very costly
and should be avoided as much as possible – it represents
38% of the total latency, compared to 0.5% when running
the recovery procedure alone [6]. Hence, a conclusion from
this work is that “if we guarantee a backup gateway for
each gateway running ODAP, the recovery procedure is always
triggered to the detriment of the rollback.” [6]. This gives us
some confidence in the performance of the protocol when the
necessary infrastructure is provided, e.g., multiple gateways
can serve as backups to one another.

E. Security Model

ODAP/SATP assumes correct behavior from all gateways
involved in the bridging operation. Nonetheless, we protect
the solution from any possible misbehavior from the final users
when triggering bridging operations.

Section IV-C presents the Asset Transfer model which
encompasses a set of requirements that must be followed to
consider a bridging operation successful. In particular, the
bridge rejects any request made to bridge CBDC from/to
different users. Moreover, the CBDC and the Asset Reference
smart contracts have access control policies that only expose
a set of predetermined functions to the exterior based on their
role. In the source chain, the CBDC chaincode is the one that
can be directly accessed by the end users and only exposes the
Escrow functionality. In turn, the Asset Reference chaincode
can only be accessed by the bridge entity or by the CBDC
smart contract (e.g., when tokens are escrowed/put in custody,
which triggers the creation of an Asset Reference representing
the same amount of CBDC). In the target chain, the CBDC
smart contract is the only one that can be called by the end
users – to escrow funds in order to bridge them back. Other
operations exposed by the CBDC smart contract must only
be exposed to the Asset Reference smart contract, which in
turn can only be called by the bridging entity (e.g., deleting
an Asset Reference triggers a call to the burn function of the
CBDC smart contract).

V. IMPLEMENTATION

We implement the presented solution in Hyperledger Cac-
tus as an application built on top of the existing ODAP/SATP
business logic plugin, comprising around 4k lines of code,
plus 2k for tests. Due to the double-blind review, we upload

the source code6, which will be merged into the main branch
of the Hyperledger Cactus project in the near future.

A. Identity Management

In order to guarantee requirements 1 and 2 enumerated
in IV-C, the bridge must be able to establish a mapping
between Fabric Identities and Ethereum addresses.

We explore the possibility of generating Ethereum addresses
based on the keys of the existing X.509 certificates used
by Fabric; the elliptic curves used in Besu and Fabric-
generated certificates turned out to be incompatible. Fabric
only supports prime256v1, secp384r1, or secp521r1 curves7,
whereas Ethereum employs the secp256k1 curve[4], just like
Bitcoin [27]. Therefore, we decide to create a registry that
maps Fabric IDs to Ethereum addresses, and the other way
around, in the Fabric ledger – the authoritative one. The current
prototype implements one-to-one mappings, however, there
is no architectural/technical obstacle to defining one-to-many
mappings as well. As an example, this would enable the sup-
port for simultaneous transactions from one CBDC account to
multiple Ethereum addresses participating in different business
collaborations.

The bridge has the responsibility of verifying the compli-
ance of each request with the content of the identity registry.
These checks are performed in ODAP’s first phase, where
gateways also must reach an agreement on the asset to be
transferred, the respective owner, and whether it complies with
the asset transfer model detailed in Section IV-C.

B. Hyperledger Fabric

In our current implementation, we leverage a single-
channel Fabric network composed of two organizations: Org1
(for CBDC holders and the issuing central bank), and Org2
(the bridging entity). In the prototype, we enroll two users
in Org1 (Alice and Charlie) and one user in Org2 (Bob).
Additionally, we leverage a solo ordering service [30] for
testing purposes (a single node that simulates consensus). All
of this is available in a Fabric Test Network provided by
Cactus. It allows quickly spinning up a Fabric network with
the above configuration while facilitating the deployment of
the chaincode. The prototype is trivial to extend to a more
refined multi-organization setup; the key point is the presence
of the ”bridging organization”.

In the Fabric network, the CBDC smart contract provides
out-of-the-box support for the well-known ERC20 Token Stan-
dard8 – a specification of fungible tokens. Since the ERC20
token standard is directed to EVM-based blockchains, on the
Fabric side, we leverage and extend the implementation of
an existing ERC20 token standard for Fabric, in JavaScript,

6https://anonymfile.com/zE3J/cactus-example-cbdc-bridging-backend.zip,
accessed on October 15, 2022

7https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.
html, accessed on October 15, 2022

8https://ethereum.org/en/developers/docs/standards/tokens/erc-20,
accessed on October 15, 2022

https://anonymfile.com/zE3J/cactus-example-cbdc-bridging-backend.zip
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html
https://ethereum.org/en/developers/docs/standards/tokens/erc-20


available in the fabric-samples repository9. It is possible to
use other token standards like ERC72110 under some restric-
tions, namely supporting the Escrow and Refund functionality.
The Escrow function gives the user the ability to escrow
CBDC, which, in our solution, is implemented as a transfer
of ownership of CBDC from the end user to a user belonging
to Org2 (e.g., Bob). On the other hand, the Refund function
reverts the operation performed by Escrow, thus, it can only be
called by an Org2 user that has control over escrowed funds.

Furthermore, the Asset Reference chaincode offers not only
the implementation of the Asset Reference data structure
mentioned before, but also functionality such as CreateAs-
setReference, DeleteAssetReference, LockAssetReference, Un-
lockAssetReference, and Refund.

As previously stated, the Asset Reference and the CBDC
smart contracts interoperate bidirectionally. When a user es-
crows funds in the CBDC chaincode, a new asset reference
is created that represents the amount of CBDC that was
escrowed. This asset reference is then transferred from Fabric
to Besu using ODAP/SATP, which is used by the bridge to
mint the corresponding CBDC to userA’s Ethereum address
in the sidechain. On the other hand, when bridging back, the
bridge initiates the refund operation which triggers the refund
of CBDC in the CBDC chaincode.

Note that, at any time, it is possible to query the CBDC
chaincode on the Fabric side so as to retrieve the total value
locked (TVL) in the chaincode at the moment.

C. Hyperledger Besu

Similarly to Fabric, we leverage a Besu all-in-one image
provided by Cactus in the form of a Besu Test Network,
creating user accounts for the same users as before: Alice,
Charlie, and Bob.

On the Besu side, similarly to what was mentioned in the
last section, we provide out-of-the-box support for the ERC20
Token Standard for the CBDC smart contract, but it may be
implemented as other token standards as well. We summarize
the requirements for an asset to be bridgeable from Besu to
Fabric as having both the Mint and Burn functionality. The
Mint function allows CBDC to be minted to an address. On the
other hand, the Burn function reverts the operation performed
by the previous one. Either operation can only be executed by
the bridging entity through the Asset Reference smart contract.

Similarly to the Fabric side, the Asset Reference smart
contract supports the following functionality: CreateAssetRef-
erence, DeleteAssetReference, LockAssetReference, UnlockAs-
setReference, and Mint. When bridging out CBDC, the mint
function is called which triggers the minting of CBDC to the
final user address. On the contrary, when bridging back CBDC,
the DeleteAssetReference function is called by the gateway
which burns tokens from the final user address in the CBDC

9https://github.com/hyperledger/fabric-samples,
accessed on October 15, 2022

10https://ethereum.org/en/developers/docs/standards/tokens/erc-721,
accessed on October 15, 2022

smart contract. The ownership of the Asset Reference smart
contract is given to the bridge entity.

D. Bridge Components

In Cactus, each API Server (containing the gateways, and
the connectors to the networks) is exposed to the exterior and
is accessible by the end users. We implement two extensions,
one for each ledger, to the default behavior of an ODAP/SATP
gateway by developing the ledger-specific functionality nec-
essary to run the protocol (lock, delete, or create an asset
reference). Moreover, we implement the functionality related
to issuing the rollback transactions.

In the first phase of the protocol, where gateways must
agree on the parameters of the transfer, a set of checks are
run to make sure the operation is valid regarding the rules and
requirements it must enforce in order to be deemed a valid
transfer. These checks range from the amount of CBDC to
be bridged, to the validity of the sender/receiver pair, and the
asset reference.

E. Example Scenario

We demonstrate the bridging operations on the scenario
captured by Figure 2, where Alice initiates the bridge out 500
CBDC to her address on the sidechain.

Alice starts by putting the 500 CBDC in custody by calling
the Escrow function in the CBDC chaincode. Internally, it
triggers the transfer of those funds to the bridge address and
calls the CreateAssetReference function in the Asset Reference
chaincode. An Asset Reference object (Listing 1) is created
representing the escrowed amount.

Listing 1. Asset Reference representing 500 CBDC
{
"id": "ID1",
"isLocked": "false",
"amount": 500,
"owner": "IdAlice",
"tokenID": "CBDCX"

}

Alice now has the identifier (ID1) of the asset reference
that represents her 500 CBDC that can be used to trigger the
bridging out operation.

Alice can now use the asset reference ID1 to make a bridge
out request to the gateway on the source chain – Gateway
1. Gateway 1 communicates with Gateway 2 to initiate the
execution of ODAP/SATP. ODAP/SATP executes the locking
and deleting of the asset in the source chain, and the creation of
a representation in the sidechain [20], thus an asset reference
would be created in the latter. Given that the bridged CBDC
might change hands in the sidechain, we do not want to create
the asset reference to avoid generating inconsistencies (e.g., an
asset reference representing 500 CBDC exists, but the user has
already transferred a portion of the bridged CBDC to another
user). Hence, the bridge does not create an asset reference,
instead, calls the mint function that is responsible for parsing

https://github.com/hyperledger/fabric-samples
https://ethereum.org/en/developers/docs/standards/tokens/erc-721


the Asset Reference with id1 and mint 500 CBDC to Alice’s
address in the CBDC smart contract.

The opposite operation, bridging back, is not shown here
for the sake of preserving space. To bridge back tokens, Alice
needs to perform the same operations, but inversely. Tokens
are escrowed in the sidechain, creating an asset reference that
will be used for the bridging entity when running ODAP/SATP.
Instead of minting tokens to the final user FI, there is a Refund
operation in the source chain. This transfers the tokens that
were in custody back to Alice.

Note that one can bridge back only a portion of CBDC
that was bridged out initially. Additionally, Alice can bridge
back tokens that were bridged out by other users who, in the
meantime, transferred CBDC to her sidechain address.

ALICE CBDC CC

escrow(500)

transfer(bridge_address, 500)

createAssetReference(500)

return id1

initiateODAP(id1)

lockAssetReference(id1)

init

SATP/ODAP

mint(id1)

return

return

return

end

SATP/ODAP

mint(500, Alice)

return

return

deleteAssetReference(id1)

Phase 1

Phase 2

Phase 3

return id1

CBDC SCASSET REF CC ASSET REF SCGATEWAY 1 GATEWAY 2

Fig. 2. CBDC bridging out sequence diagram

VI. EMPIRICAL EVALUATION

We set up a pilot environment to perform an early evaluation
of the proposed solution. We used a GCP Compute Engine
VM, with an instance composed of 4 vCPUs, and 20 GB of
memory, using an Ubuntu 18.04 image. We spun up a Fabric
and Besu network using the publicly available Cactus Fabric
All-In-One and Cactus Besu All-In-One Docker images. The
results shown in this section are the average of 500 indepen-
dent runs. We are interested in the latency introduced by the
bridging solution; hence we separate the latency introduced
by the steps executed on ledger platforms (i.e., lock/delete at
the Fabric side and mint at the Besu side) from those of the
bridging solution (steps executed by Gateways). Our goal is to
perform a first validation and check whether the delay caused
by the solution is within the acceptable range.

Fig. 3. Bridging protocol vs overall latency

Our preliminary results show that the overhead introduced
by the bridge (compared to the steps which are performed
within the blockchain networks) are in line with other recent
studies (e.g., [13] using Cactus, separating intra and inter-
blockchain communication) and in most cases, are below
30% of the end-to-end response time. There are of course
several further improvements of the measurement configura-
tion necessary before a well-founded benchmarking campaign:
separation of components, changing consensus mechanism at
the Besu side (from PoW to IBFT), and more precise workload
definitions would be the most obvious ones.

VII. CONCLUSIONS

In this work, we contribute to the state of the art with an
interoperability approach across permissioned chains in heav-
ily regulated settings, while also adopting emerging standards
that can alleviate some of the core interoperability problems. In
specific, we leverage the ODAP/SATP protocol, under specifi-
cation at IETF, to conduct cross-chain asset transfers between
heterogeneous permissionless blockchains. We implement a
CBDC bridging solution between Fabric and Besu, leveraging
ODAP/SATP’s implementation in Hyperledger Cactus. We
build a common understanding on both sides of the bridge
through a common asset definition that represents a certain
amount of CBDC. Moreover, a mapping between Fabric
Identities and Ethereum addresses is assembled to ensure
client-initiated operations follow our Asset Transfer Model.
The solution guarantees the ACID properties as well as termi-
nation and auditability. Finally, our analysis proves our initial
hypothesis in which the total latency of the bridging solution
is tightly coupled to the ledgers, thus the bridging components,
i.e. gateways, do not incur in significant overhead.

http://ghcr.io/hyperledger/cactus-fabric-all-in-one
http://ghcr.io/hyperledger/cactus-fabric-all-in-one
http://ghcr.io/hyperledger/cactus-besu-all-in-one


REFERENCES

[1] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakr-
ishna, and J. Yu. Verifiable observation of permissioned ledgers. CoRR,
abs/2012.07339, 2020.

[2] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakr-
ishna, and J. Yu. Verifiable observation of permissioned ledgers. In
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1–9, 2021.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the thirteenth EuroSys conference, pages
1–15, 2018.

[4] A. M. Antonopoulos and G. Wood. Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[5] R. Auer, P. Haene, H. Holden, et al. Multi-CBDC arrangements and the
future of cross-border payments. BIS Papers, 2021.

[6] A. Augusto, R. Belchior, A. Vasconcelos, and T. Hardjono. Resilient
Gateway-Based N-N Cross-Chain Asset Transfers. TechRxiv, Jun. 2022.
[Online]. Available: https://www.techrxiv.org/articles/preprint/Resilient
Gateway-Based N-N Cross-Chain Asset Transfers/20016815.

[7] Banque de France. Digital euro experiment, combined feasibility –
tiered model, July 2021. https://www.banque-france.fr/sites/default/files/
media/2021/08/02/821220 digital euro en.pdf.

[8] A. Bechtel, A. Ferreira, J. Gross, and P. Sandner. The future of payments
in a dlt-based european economy: A roadmap. In The Future of Financial
Systems in the Digital Age, pages 89–116. Springer, Singapore, 2022.

[9] R. Belchior, P. Somogyvari, J. Pfannschmid, A. Vasconcelos, and
M. Correia. Hephaestus: Modelling, Analysis, and Performance
Evaluation of Cross-Chain Transactions. TechRxiv, Sep. 2022. [Online].
Available: https://www.techrxiv.org/articles/preprint/Hephaestus
Modelling Analysis and Performance Evaluation of Cross-Chain
Transactions/20718058.

[10] R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia. Is My Perspective Better Than Yours? Blockchain
Interoperability with Views. TechRxiv, Jun. 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is My Perspective Better
Than Yours Blockchain Interoperability with Views/20025857.

[11] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono. Hermes:
Fault-tolerant middleware for blockchain interoperability. Future Gen-
eration Computer Systems, 2021.

[12] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey
on blockchain interoperability: Past, present, and future trends. ACM
Comput. Surv., 54(8), oct 2021.

[13] P. Bellavista, C. Esposito, L. Foschini, C. Giannelli, N. Mazzocca, and
R. Montanari. Interoperable Blockchains for Highly-Integrated Supply
Chains in Collaborative Manufacturing. Sensors, 21(15):4955, July
2021.

[14] J. Benet. IPFS – Content Addressed, Versioned, P2P File System. arXiv,
2014. [Online]. Available: http://arxiv.org/abs/1407.3561.

[15] BIS Innovation Hub. Central bank digital currencies: foundational
principles and core features, October 2020. https://www.bis.org/publ/
othp33.pdf.

[16] U. Emanuele, B. Alessia, C. Daniele, C. Angela, C. Marco, F. Simone,
G. Giuseppe, G. Giancarlo, M. Gabriele, T. Pietro, and V. Alessia. A
digital euro: a contribution to the discussion on technical design choices.
Mercati, infrastrutture, sistemi di pagamento, (10), 2021.

[17] G. Falazi, U. Breitenbücher, F. Daniel, A. Lamparelli, F. Leymann, and
V. Yussupov. Smart contract invocation protocol (scip): A protocol for
the uniform integration of heterogeneous blockchain smart contracts. In
S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, editors, Advanced
Information Systems Engineering, pages 134–149, Cham, 2020. Springer
International Publishing.

[18] T. Hardjono, R. Belchior, M. Correia, and A. Augusto. Dlt gateway
crash recovery mechanism (draft-belchior-gateway-recovery-04). https://
datatracker.ietf.org/doc/html/draft-belchior-gateway-recovery-04, 2021.
[Online].

[19] T. Hardjono, A. Lipton, and A. Pentland. Towards an interoperability
architecture for blockchain autonomous systems. IEEE Transactions on
Engineering Management, 67(4):1298–1309, 2019.

[20] M. Hargreaves, T. Hardjono, and R. Belchior. Secure Asset Transfer
Protocol draft 00. Internet-Draft draft-hargreaves-sat-core-00, Internet

Engineering Task Force, 2021. [Online]. Available: https://datatracker.
ietf.org/doc/draft-hargreaves-sat-core/.

[21] M. Hearn and R. G. Brown. Corda: A distributed ledger. Corda
Technical White Paper, 2016, 2016.

[22] J. Kwon and E. Buchman. Cosmos whitepaper, 2019.
[23] R. Lan, G. Upadhyaya, S. Tse, and M. Zamani. Horizon: A gas-efficient,

trustless bridge for cross-chain transactions. CoRR, abs/2101.06000,
2021.

[24] M. Li, J. Weng, Y. Li, Y. Wu, J. Weng, D. Li, G. Xu, and R. Deng.
Ivycross: A privacy-preserving and concurrency control framework
for blockchain interoperability. Cryptology ePrint Archive, Paper
2021/1244, 2021. https://eprint.iacr.org/2021/1244.

[25] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas. Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, HASP 2016. Association for Computing Machinery,
2016.

[26] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Som-
ogyvari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior. Hy-
perledger cactus whitepaper. https://github.com/hyperledger/cactus/blob/
main/whitepaper/whitepaper.md, 2020. [Online].

[27] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review, page 21260, 2008.

[28] C. Pedreira, R. Belchior, M. Matos, and A. Vasconcelos. Securing
Cross-Chain Asset Transfers on Permissioned Blockchains. TechRxiv,
2022. [Online]. Available: https://www.techrxiv.org/articles/preprint/
Trustable Blockchain Interoperability Securing Asset Transfers on
Permissioned Blockchains/19651248, 2022.

[29] A. Sanchez, A. Stewart, and F. Shirazi. Bridging sapling: Private cross-
chain transfers, 2022.

[30] S. Shalaby, A. A. Abdellatif, A. Al-Ali, A. Mohamed, A. Erbad,
and M. Guizani. Performance evaluation of hyperledger fabric. In
2020 IEEE International Conference on Informatics, IoT, and Enabling
Technologies (ICIoT), pages 608–613, 2020.

[31] D. Stone. Trustless, privacy-preserving blockchain bridges. https://arxiv.
org/abs/2102.04660, 2021. [Online].

[32] G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework.
White Paper, 21, 2016.

[33] L. Wu, Y. Kortesniemi, D. Lagutin, and M. Pahlevan. The flexible in-
terledger bridge design. In 2021 3rd Conference on Blockchain Research
& Applications for Innovative Networks and Services (BRAINS), pages
69–72, 2021.

[34] A. Xiong, G. Liu, Q. Zhu, A. Jing, and S. W. Loke. A notary group-
based cross-chain mechanism. Digital Communications and Networks,
2022.

https://www.techrxiv.org/articles/preprint/Resilient_Gateway-Based_N-N_Cross-Chain_Asset_Transfers/20016815
https://www.techrxiv.org/articles/preprint/Resilient_Gateway-Based_N-N_Cross-Chain_Asset_Transfers/20016815
https://www.banque-france.fr/sites/default/files/media/2021/08/02/821220_digital_euro_en.pdf
https://www.banque-france.fr/sites/default/files/media/2021/08/02/821220_digital_euro_en.pdf
https://www.techrxiv.org/articles/preprint/Hephaestus_Modelling_Analysis_and_Performance_Evaluation_of_Cross-Chain_Transactions/20718058
https://www.techrxiv.org/articles/preprint/Hephaestus_Modelling_Analysis_and_Performance_Evaluation_of_Cross-Chain_Transactions/20718058
https://www.techrxiv.org/articles/preprint/Hephaestus_Modelling_Analysis_and_Performance_Evaluation_of_Cross-Chain_Transactions/20718058
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857
http://arxiv.org/abs/1407.3561
https://www.bis.org/publ/othp33.pdf
https://www.bis.org/publ/othp33.pdf
https://datatracker.ietf.org/doc/html/draft-belchior-gateway-recovery-04
https://datatracker.ietf.org/doc/html/draft-belchior-gateway-recovery-04
https://datatracker.ietf.org/doc/draft-hargreaves-sat-core/
https://datatracker.ietf.org/doc/draft-hargreaves-sat-core/
https://eprint.iacr.org/2021/1244
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248
https://arxiv.org/abs/2102.04660
https://arxiv.org/abs/2102.04660

	CBDC bridging between Hyperledger Fabric and permissioned EVM-based blockchains
	Introduction
	Interoperability for an ecosystem of CBDC applications
	Bridging CBDCs
	Contribution

	Background
	Hyperledger Fabric
	Hyperledger Besu
	Hyperledger Cactus
	ODAP/SATP

	Related Work
	Solution Design
	Bridging Model
	CBDC and Common Asset definitions
	Asset Transfer Model
	Failure Model
	Security Model

	Implementation
	Identity Management
	Hyperledger Fabric
	Hyperledger Besu
	Bridge Components
	Example Scenario

	Empirical Evaluation
	Conclusions
	References

