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Resumo

A auditabilidade de sistemas de informação é fulcral na administração pública. Os acessos feitos

a recursos geridos pelos sistemas de informação são guardados em ficheiros log, para mais tarde

poderem ser analisados por auditores. No entanto, há dois problemas na forma em como os logs

convencionais são geridos: i) os logs são vulneráveis a ataques, onde os adversários podem modi-

ficar os dados, sem serem detetados e ii) podem existir várias partes interessadas com diferentes

papéis e ńıveis de confiança, com diferentes direitos de acesso à informação. Este é o caso no

sistema judicial português, em que os utilizadores finais utilizam sistemas de informação geridos

por terceiros. Este trabalho propõe utilizar a tecnologia blockchain para tornar o armazena-

mento de logs aplicacionais mais resiliente, e ao mesmo tempo suportar um caso com várias

partes interessadas, em que diferentes entidades têm diferentes direitos de acesso aos dados,

nomeadamente logs. Esta proposta é implementada no sistema judicial português através do

JusticeChain. O JusticeChain é dividido na componente blockchain e na componente cliente

da blockchain. A componente blockchain, baseada em Hyperledger Fabric, garante integridade

dos logs, e aumenta a sua resiliência. O cliente da blockchain, JusticeChain Client, permite

guardar logs aplicacionais, e é composto pelo JusticeChain Log Manager e o JusticeChain Au-

dit Manager. O último permite auditorias mediadas pela blockchain. A avaliação do sistema

mostrou que este consegue uma taxa de transferência de 37 transações por segundo, e uma

latência menor que 1 minuto. O armazenamento necessário é na ordem dos terabytes por ano,

por cada nó da blockchain. Propomos uma extensão do JusticeChain, JusticeChain v2.0, um

sistema de controlo de accessos baseado em blockchain que permite distribuir mais confiança

para os stakeholders. JusticeChain v2.0 permite distribuir o processo de autorização, enquanto

providencia as mesmas vantages que o JusticeChain. A nossa avaliação mostra que o nosso

sistema pode suportar cerca de 250 pedidos de acesso por segundo, com uma latência menor que

12 segundos. O armazenamento necessário é aproximadamente o mesmo que no JusticeChain.

Palavras-chave: blockchain, auditoria, logs de auditoria, administração pública
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Abstract

The auditability of information systems plays an important role in public administration. In-

formation system accesses to resources are saved in log files so auditors can later inspect them.

However, there are two problems with managing conventional audit logs: i) audit logs are vul-

nerable to attacks where adversaries can tamper data, without being detected and ii) there can

be distinct stakeholders with different roles and different levels of trust with different access

rights to data. This scenario happens in the Portuguese judicial system, where stakeholders uti-

lize an information system managed by a third-party. This document proposes using blockchain

technology to make the storage of access logs more resilient while supporting such a multi-

stakeholder scenario, in which different entities have different access rights to data. Towards

that, we implemented this proposal in the Portuguese judicial system through JusticeChain.

JusticeChain is divided into the blockchain components and blockchain client components. The

blockchain components, implemented with Hyperledger Fabric, grant log integrity and improve

its resiliency. The blockchain client component, JusticeChain Client, is responsible for saving

logs on behalf of an information system and comprises the JusticeChain Log Manager and Jus-

ticeChain Audit Manager. The latter allows audits mediated by the blockchain. The evaluation

results show that the system can obtain a throughput of 37 transactions per second, and latency

lower than 1 minute. The required storage for each peer, for a year, is in the order of terabytes.

As an extension of JusticeChain, which achieves even more trust distribution, we present a

blockchain-based access control system, JusticeChain v2. JusticeChain v2 allows distributing

the authorization process while providing the same advantages as JusticeChain. Our evaluation

shows that our system can handle around 250 access control requests per second, with a latency

lower than 12 seconds. The storage required is approximately the same as JusticeChain.

Keywords: blockchain, auditing, audit logs, public administration
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Chapter 1

Introduction

Organizations have the responsibility of protecting their sensitive data, a valuable resource that

often guides business decisions. Access control mechanisms aim to identify subjects that require

access to resources and allow or deny them the access, based on the context of the request

[20, 39]. Digital traces are recorded in log files. Log files, or audit logs, enable auditors to audit

the system’s state, monitoring users and provide user accountability concerning their roles,

performance and permissions. This way, one can verify if the involved parties are using the

system for illegal purposes or to gain an unfair advantage. Audit logs are used by data-sensitive

systems for logging activities on a database and can be used as a way to back up the system

state. Since audit logs are typically saved on conventional databases, they reflect a centralized

client-server model of communication, constituting a single point of failure.

At the Portuguese judicial system, there is an information system to manage judicial pro-

cesses at courts that supports several stakeholders. The entity that maintains that the system

faces different incentives from the stakeholders that use it, leading to a multi-stakeholder sce-

nario with uncertain trust among them. In such a scenario, separate entities have different

access rights to data. Threats to log integrity, like log file tampering, have to be minimized, as

they can invalidate audits as tampered data cannot be trusted [12, 21]. If logs are not tamper-

proof, attackers may delete their traces, which may result in permanent information loss. As

a consequence, attackers can hide illegal activities from the auditors. Standard solutions to

ensure log integrity, such as checksums [13], or database replication [55] do not tackle the need

for trust distribution and disintermediation. Moreover, often there are users with root access to

such databases, who can edit its entries directly, and thus there is the need for implementing a

stronger security model, based on the immutability and distribution of audit logs.

Blockchain technology has emerged as a vehicle for decentralization, transparency and trust

while conserving security, privacy and control, which can leverage auditability and trust distri-
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bution [60], both critical requirements for information systems at public administration. This

research proposes the use of blockchain technology as a solution to overcome the problems con-

cerning the integrity of logs and access by several stakeholders. The blockchain can replicate

the audit logs across nodes which represent the various stakeholders. Hence, audit logs can be

granted desirable properties such as immutability, tamper-proof, and integrity, allowing, us to

build a transparent and collaborative network.

In particular, we introduce JusticeChain1, a system to store, protect and decentralize appli-

cational logs built on top of a permissioned, private, blockchain, Hyperledger Fabric [3], while

distributing their access to the stakeholders. JusticeChain is a modular system with several

components that takes advantage of Fabric to allow flexible management of the stakeholders.

JusticeChain receives log entries from a set of oracles, processes them at the Log Manager com-

ponent, and acts as a client to the underlying Hyperledger Fabric infrastructure. The Audit

Log Manager component can be used by authorized auditors to read logs from the blockchain.

We present an experimental evaluation of JusticeChain using Hyperledger Caliper [27], a project

that enables blockchain load testing. After that, JusticeChain v2 is presented, as an incremental

improvement over JusticeChain. JusticeChain v2 is a blockchain-based access control system,

that regulates the authorization process, creates and maintains applicational logs.

1.1 Motivation

The Instituto de Gestão Financeira e Equipamentos da Justiça (IGFEJ ) manages the financial,

patrimonial and technological resources of the Portuguese Ministry of Justice. In particular,

it provides the infrastructure and systems administration to enable several business processes,

some of them pivotal for the proper functioning of the Portuguese courts. With a budget of

around 450 million euros and a staff composed by 372 human resources (2019)2, it manages

several systems, like the Citius system, which supports judicial processes, and SITAF, which

supports the administrative and fiscal courts. In 2018, users allegedly fraudulently used the

system Citius, as could be seen on the news3. Although there are some guarantees concerning

the integrity and availability of applicational logs that are audited, one could improve the current

status.

Furthermore, there is a concentration of responsibilities by IGFEJ, as it controls the au-

thentication, authorization and accountability processes of systems used by stakeholders with

different incentives. Specific IGFEJ teams responsible for each information system manage the

1https://github.com/RafaelAPB/JusticeChain
2https://igfej.justica.gov.pt
3https://observador.pt/especiais/ como-a-toupeira-do-benfica-foi-apanhada-pela-justica
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authorization process locally. This fact leads to two problems: i) there is space for interoperabil-

ity issues, as teams from each information system are self-organized and independent from others

and ii) conflict of interests, where several parties have different incentives. In particular, as the

judicial power is independent of the political power, the users of the systems (judicial power)

do not report to the administrators of such systems (political power). We propose JusticeChain

to address the problems related to data integrity and to audit purposes and JusticeChain v2 to

mitigate the problems i) and ii).

1.2 Objectives

Considering the existing data protection and access control solutions and the potential of the

blockchain technology, based on its intrinsic properties, the main objective of this work is to

increase the resiliency of applicational logs. Furthermore, access to protected applicational logs

should be mediated, and the information produced by such accesses should also be protected.

The solution should tackle several challenges:

• How to guarantee the integrity of the applicational logs of information systems which are

administrated by a third-party? In particular, how to guarantee that applicational logs

from information systems administered by IGFEJ are tamper-proof?

• How to distribute responsibility to the involved stakeholders?

• How to make sure that such logs are not accessed unduly?

We yield several contributions not only to the Portuguese but also for the blockchain ecosys-

tem. In particular, this thesis proposes a systematic analysis of some security risks at the

Portuguese justice, concerning data-tampering threats on applicational logs. Although research

has been done on securing data integrity, the case at the Portuguese justice is more complicated:

there is a multi-stakeholder scenario, in which each participant has limited trust in others. This

fact turns the challenge of protecting applicational logs into the challenge of protecting such

data in a distributed way. In other words, there is the need to assure all parts involved that the

logs being stored are i) immutable, ii) can be accessed by authorized parties under exceptional

circumstances and iii) facilitates trust between participants. As an additional contribution to

JusticeChain, and to distribute trust on a larger scale, JusticeChain v2 tackles several challenges:

• Can we solve the root issues with access control, namely the local, centralised authorisation

processes performed in different systems administrated by IGFEJ?

3



• Is there a possibility of exploring synergies between the access control systems and data

integrity, namely log entries integrity?

• Ultimately, how to provide a secure, decentralised, scalable access control system, that is

more robust and distributes trust concerning authorisation, while assuring logs’ integrity

and availability?

The specific needs under a specific context foster the usage of innovative technologies that

can address them. To answer such threats and achieve disintermediation, we propose using

blockchain technology to tackle such scenario: assuring data integrity, while distributing ac-

countability, responsibility, and trust for that data.

1.3 Dissertation Outline

The remainder of the document is structured as follows: Chapter 2 presents background about

the blockchain technology, audit logs, access control and blockchain access control. Chapter 3

analyses the context at IGFEJ, providing a list of requirements and a threat model. Next, it

presents the system model and data model of JusticeChain. Lastly, it discusses JusticeChain’s

architecture and implementation details. Chapter 4 presents the system model, architecture and

the implementation of JusticeChain v2. Chapter 5 presents an evaluation methodology to assess

JusticeChain and JusticeChain v2. The results from the theoretical and experimental evaluation

are presented and discussed. Next, we compare JusticeChain with JusticeChain v.2.0, providing

a discussion on its similarities and differences. Finally, Chapter 6 concludes this dissertation,

fostering future works.
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Chapter 2

Background and Related Work

This chapter presents background about blockchain, audit logs, access control, and blockchain-

based access control. First, as a viable solution that can address these problems, the blockchain

concept is introduced, as well as its characteristics. Permissionless and permissioned blockchain

infrastructures are be briefly discussed and compared, in order to choose the most appropriate to

our use case. Next, Hyperledger Fabric are be discussed in detail, including its architecture and

components. After that, we present related work considering the usage of blockchain technology

to protect logs. After that, this chapter reviews access control models. Next, we review the

state-of-the-art study of the current solutions that use blockchain for access control. Finally,

we present the state-of-the-art at IGFEJ, such as the systems they administrate, the different

participants in the ecosystem, their access control mechanisms, their main issues related to

access control, and the system architecture of Citius, the information system that we focus on.

2.1 Blockchain

A blockchain is a transparent, persistent append-only distributed ledger, which contains records

grouped into blocks. It is a distributed ledger, which allows trusted transactions amongst un-

trusted participants [47]. For the sake of simplicity, we make no distinction between blockchain

and distributed ledger technology.

A core concept of a blockchain is the transaction. The term transaction refers to the first

blockchain created, Bitcoin 1. As Bitcoin was created to provide solutions on the financial scope,

one can use the term record to refer to transactions on non-financial applications. A record is

a collection of data. Records form blocks and blocks form a chain, hence the name blockchain.

Each block has a timestamp and a hash of the previous block on the chain. For a block to

1http://bitcoin.org/bitcoin.pdf
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be added to the blockchain, each record that belongs to it has to be validated. The validation

process assures that records and thus, blocks are legal.

All entities that participate in distributed data storage form a network of nodes. Nodes are

computing entities that communicate with other nodes, to complete transactions. In a network,

nodes can also be called participants. Participants in the network agree on the state of the

distributed ledger, and there may be malicious nodes. For instance, one node might try to ap-

pend a block which is not valid to the ledger. The process of agreeing to a global state is called

consensus. Participants of the network reach consensus using a consensus algorithm. In the

context of blockchain technology, the first consensus mechanism is proof of work (PoW ). PoW

is the consensus mechanism for Bitcoin2. PoW consists of transaction validators (called miners)

solving a resource-demanding cryptographic puzzle. In particular, miners need to calculate the

hash of a random nonce which starts with a certain number of zeroes. As the process of main-

taining consensus is expensive, the network monetarily incentivizes miners, rewarding the first

miner that solves the puzzle. Thus, the first miner builds a block containing valid transactions

and is awarded cryptocurrency (in this case, bitcoin). The fact that PoW is expensive, and that

attackers are not rewarded bitcoin (as the network invalidates their transactions), makes the

network resilient.

For different blockchains, one might see different consensus algorithms and different reward

mechanisms, especially in permissionless blockchains, as they rely on the contribution of anony-

mous nodes to maintain the ecosystem. In general, the blockchain technology presents a set of

properties that ensure integrity, authenticity, transparency, traceability, and auditability, that

are attractive to solve a specific set of problems.

The blockchain technology is not only an alternative to centralized banking but also enables

new architectures, as it can be used as a software connector [56]. One of its usages is as a

communication service, as it is a decentralized alternative to the current centralized data storage,

improving information traceability and transparency. Regarding integrity and authenticity, the

system enables granular access control in conjunction with privacy and transparency.

Even though it might seem an appropriate fit for the problem tackled in this thesis, there are

some inherent issues with this technology. It suffers from challenges such as security, scalability,

privacy and governance issues, especially on public blockchains. Concerning Bitcoin, it requires

an attacker a lot of computational resources to corrupt the digital ledger, due to the usage of

hashes and private-public key pairs. Attacks such as the 51% Attack, the Brute Force Attack,

Goldfinger, or Fork After Withholding are possible, although unlikely [14]. Risks associated

2https://bitcoin.org/bitcoin.pdf
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with each blockchain platform are dependent on its implementation and, therefore, have to be

addressed accordingly. For instance, in Hyperledger Fabric, a permissioned blockchain, the 51%

Attack does not occur, as transactions are endorsed following an endorsement policy. Another

problem, depending on the framework, is performance. For high scalability and high throughput

requirements, the blockchain might not be the most suitable solution, as it is often lower than

in traditional databases. Finally, even in a private blockchain, it is not apparent how to assure

users’ privacy, because, in theory, transactions are immutable.

2.1.1 Permissionless blockchains

Permissionless blockchains can be accessed and utilized by anyone with Internet access. Typi-

cally, in such networks, the participants are rewarded, self-sustainable, open-source and, there-

fore, have more support from the community. The first entirely decentralized digital currency,

Bitcoin, is a permissionless peer-to-peer version of electronic cash, which would allow trans-

actions to go directly from one party to the other, excluding the need for any intermediary.

Bitcoin quickly gained popularity because it solved the famous double-spending problem, with-

out the need of any central authority [57]. In the Bitcoin context, the records that miners append

to the ledger are called transactions. The transactions occurring in the network are accessible

to everyone. Miners, who constitute a specific class of participants, aggregate transaction re-

quests from users, validate them and add them to the network. Given the decentralized nature

of Bitcoin, where nodes can be malicious, there is the need to use a consensus algorithm. The

problem of consensus often arises on distributed systems, where its agents may not agree on

data needed for computation. To ensure proper behaviour, Bitcoin uses a probabilistic consen-

sus algorithm called proof of work, in which miners have to compute a string which hash starts

with a certain number of zeroes. As the consensus is probabilistic, it is possible for more than

one block to be generated almost at the same time, competing for the same blockheight h. There

may be situations in which different nodes accept different blocks for the same block height,

resulting in a fork. Proof of work ends up being computationally very expensive, and has a poor

performance: the expected block-mining rate is one block every 10 minutes, with around six

transactions per second [56]. Effectively, permissionless blockchains have an expensive cost per

transaction, as there is a trade-off between security and performance. When comparing Bitcoin

and Ethereum3 to VISA, we observe that the first can handle 3-20 transactions per second,

while the second can handle on average 2000 transactions per second [56]. Besides this, Bitcoin

was only meant to serve a particular purpose: facilitate digital transactions. Since Bitcoin is

3https://github.com/ethereum/wiki/wiki/White-Paper
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a single-purpose blockchain, it motivated the appearance of another permissionless blockchain,

Ethereum. Ethereum aims to be a decentralized peer-to-peer cryptocurrency and to support

blockchain applications other than financial. The Ethereum blockchain is a decentralized plat-

form which provides a runtime environment for smart contracts called Ethereum Virtual Machine

(EVM), a distributed computer system that executes code. In Ethereum, groups of transactions

are called blocks, like in Bitcoin. The transactions are signed with the owner’s private key. Once

they are signed, participants send them to validators. Validators are nodes that validate records

and group them into blocks and are rewarded the transaction fees when a block is validated.

Blocks are then propagated, flooding the network [56]. The consensus algorithm that Ethereum

is based on is proof of work, although it is going to changed to proof of stake (PoS). In proof of

stake, validators take turns proposing and voting on the next block to be added to the chain,

and the weight of each validator’s vote depends on the size of its stake (deposit). Significant

advantages of PoS include security, reduced risk of centralization, and energy efficiency. The

novelty introduced by Ethereum, the one that is particularly interesting to address our problem

is the smart contract concept.

Smart contracts may be written in domain-specific languages such as Solidity. Clients upload

smart contracts on the blockchain after being compiled into bytecode, a low-level programming

language that is run by Ethereum Virtual Machine (EVM). In Ethereum, every contract has its

storage. Only the corresponding contract can change the storage. Transactions run against a

smart contract and can cause updates in the data storage. For smart contracts on blockchain

systems such as Ethereum, access to real-world data is critical, as some applications need real-

time information. It is not trivial to load external data in smart-contracts. Nonetheless, some

efforts have been made in order to try to provide trustworthy data to smart contracts, through

oracles [58].

Permissionless blockchains deliver a transparent, auditable network, although privacy is not

assured, as they are opened for everyone to join and see the transactions. Drawbacks include:

• Scalability. The state of the blockchain should be kept in every node of the network. Bitcoin

and Ethereum only can process 3-20 transactions per second, on average [56]. In the Bitcoin

case, the latency for a transaction is around 10 minutes. The throughput is majored by

its block size divided by the block interval [15]. As Bitcoin regulates itself dynamically,

and the trend is the block size to increase, it arrises some challenges, as throughput tends

to diminish. In the Ethereum network, requests’ are executed in the order of consensus,

which is sequential. Sequential execution translates into lower throughput, and higher

latency, which translates in fewer transactions per second.
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• Privacy. This concern is greater in public blockchains, where all data is accessible to

everyone, permanently. Data privacy is important in any secured system since users’ data

is considered as an asset to both organizations and individuals.

• Storage. According to Kaspersky Lab, more than 200Gb of data has been generated by the

Ethereum network in two years 4. If the current growth rate stays stable, the blockchain’s

lifespan is limited due to storage capacity, as miners need to have the whole transaction

history locally. A possible solution is the usage of thin clients that only download the

headers of the blocks belonging to a blockchain.

2.1.2 Permissioned blockchains

Permissioned blockchains are blockchains where the participants are identified and have access

rights to participate in it [53]. Inversely to public blockchains, in which the control and confi-

dence are distributed to possibly unknown parties, private blockchains are the property of an

organization or consortium of organizations. If more than one organization is included in the

management of the blockchain, it is called a community or federated blockchain. A permissioned

solution seems suitable for companies aiming for competitiveness that blockchain technology can

offer, while protecting sensitive information. Write permissions are kept centralized to specific

nodes within the organization. Therefore, a trade-off between control and decentralization exists.

On a technological point of view, compared to public blockchains, there is an aggravated risk

of subversion, as there are fewer participants in the network that validates transactions. Never-

thesless, in practice, as the network only allows identified participants, it is easier to identify a

culprit.

Taking advantage of programmable transactions, supported by multiple blockchain frame-

works, the organization responsible for the blockchain administration can define the business

logic and business rules that manage the blockchain. Some examples of permissioned blockchain

systems include Hyperledger Fabric [3], R3 Corda 5, and Multichain 6. Permissioned blockchains,

in particular Fabric, is tackled in greater detail on Section 2.2.

2.1.3 Blockchain Infrastructures Comparison

Public blockchains allow any node to access the network and give its contribution. As every the

node has access to the records, there is a privacy concern to the problem discussed. Although it is

possible to have a public permissioned blockchain, it is not the most desirable case, because there

4https://www.kaspersky.com/blog/bitcoin-blockchain-issues/18019/
5http://www.r3.com/reports/the-corda-platform-an-introduction-whitepaper/
6https://www.multichain.com/white-paper/
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might be sensitive information to be stored. Furthermore, they usually are poor performers, with

a low rate of transactions per second (tps), as the consensus mechanisms are expensive.

Permissioned blockchains guarantee that only authorized nodes can access and visualize

the information on the network. For this reason, most of the compared elements are permis-

sioned blockchain solutions. Regarding scalability, in a permissionless, public blockchain, the

throughput is 3-20 transactions per second, whereas using a permissioned blockchain, it can be

significantly higher [56]. The table 2.1 compares Fabric, Ethereum, Quorum and Corda. This

comparison introduces some concepts, such as zero proof of knowledge (ZPK). ZPK is a method

by which a party can prove to another their knowledge about a fact without disclosing any other

information than that. Table 2.1 compares several blockchain infrastructures, with regard to

metrics such as throughput, consensus, access control and data privacy features.

Metrics Fabric (permissioned) Ethereum (permissionless) Quorum (permissioned) R3 Corda (permissioned)

Throughput More than 2000 tps Around 200 tps Around 100 tps Around 170 tps
Consensus Pluggable: - Trusted Solo -

Crash fault tolerant Kafka
- Raft

Proof of work Pluggable: - Raft consen-
sus - Istanbul BFT

Pluggable: - Trusted Solo
- Raft

Database
(DB)

LevelDB , CouchDB levelDB levelDB H2 database

Access
Control

Organization level ac-
cess control on channels
ABAC and RBAC in
smart-contracts

ABAC and RBAC in
smart-contracts

ABAC and RBAC in
smart-contracts

Organization level access
control

Data
Privacy

Multiple private collec-
tions each with a different
set of members. A trans-
action can span both
private and public DBs.

No Single private DB per
node. A transaction can-
not span both private and
publicDB.

Data is private to the par-
ties involved in the trans-
action

Tokens Defined by smart contracts Ether Ether No
Zero
Knowl-
edge
Proof

Yes No Yes No

Multi-
Tenancy

Supported using channels No No Isolated and multi-tenant
by design

Transaction
Privacy

Supported only across
channels

No Supported with private
DB

All transactions are pri-
vate and only seen by the
authorized participants

Pruning
of
Blocks
and
State
DB

No Yes Yes Yes

Smart-
Contract
Lan-
guage

Golang, Java, NodeJS Solidity Solidity Kotlin, Java

Table 2.1: Comparison of Blockchain Platforms [18]

Ethereum has several drawbacks concerning our problem. Firstly, it is a permissionless

blockchain. One would have to protect sensitive information from the rest of the network, for

example, by encrypting data, which would constitute a considerable overhead. It also suffers

from scalability issues, as the throughput is low, about 200 tps. The current consensus algorithm

is proof of work, which is very demanding in terms of processing power. Furthermore, for each

transaction, the initiator has to pay a fee (called gas). This fee is proportional to the computing

power necessary to execute the transaction. Quorum7 is a permissioned blockchain based on the

official Go implementation of Ethereum. Quorum uses a raft-based consensus algorithm, which

7https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
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allows for better performance than Ethereum. Quorum follows the order-execute paradigm,

resulting in low throughputs. Although a better fit than Bitcoin and Ethereum concerning our

problem, it still has a low throughput compared to other infrastructures, on the few hundreds

of transactions per second. As a digital token, it uses Ether, which does not make sense in our

case.

R3 Corda is a blockchain platform that enables management of legal contracts between mu-

tually trusting organizations. The platform makes it possible for a diverse range of applications

to interoperate on a single network, with a focus on financial applications. As a downside, it has

a low throughput. It has no support for transaction endorsement and fine-grain access control.

MultiChain offers flexibility in designing blockchain applications, which are mainly directed

to record assets. A significant limitation of MultiChain (version 1.0) is that it does not implement

smart contracts. Despite not having support for smart contracts, Multichain (version 2.0) has

smart filters. The blockchain embeds smart filters, which is a piece of code, similar to smart

contracts. This code defines rules that regulate the validity of transactions or stream items. At

a high level, those are similar to smart contracts. MultiChain 2.0 is now under development and

is not suitable for production environments.

Quorum and Multichain use PBFT or similar protocols for atomic broadcast, and they

follow the order-execute approach [3]. The order-execute paradigm translates into a sequential

execution of transactions, resulting in higher latency and a lower throughput rate, with regard

to permissionless solutions.

Hyperledger Fabric (Fabric) is a blockchain framework implementation, backed by the Linux

Foundation and IBM [3]. Fabric can accommodate faulty assumptions, as clients might have

Byzantine behaviour (provoking byzantine faults). A byzantine fault is a condition in distributed

systems, where components of the network might fail, and there is imprecise information on

whether a component failed. Fabric’s architecture lets users choose an orderer service that

implements a consensus algorithm that fits their application.

Fabric uses endorsement policies to define which peers, and how many of them are necessary

to vouch for the correctness of a specific smart contracts (also called chaincode) execution8.

Organizations group peers who form independent trust domains, i.e., peers from the same orga-

nization trust each other. Several organizations can form a consortium is a group of non-orderer

organizations that form channels and own peer nodes. Fabric achieves a separation between the

execution of smart contracts and the addition of new blocks to the blockchain, deviating from

the order-execute paradigm, hence following the execute-order-validate paradigm [3].

8https://hyperledger-fabric.readthedocs.io/en/release-1.4
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Programmers write smart contracts using a mainstream programming language, such as

GoLang or Java. The consensus in Fabric is pluggable [52], i.e., using Kafka’s Zookepeter or

Raft, both crash fault tolerant consensus mechanisms. Plugability allows the developer to adapt

the consensus to the requirements of the environment. The consensus algorithms currently im-

plemented to achieve consensus deterministically. This way, forks as in the Bitcoin network are

prevented. Fabric can utilize different consensus protocols that do not require a native cryp-

tocurrency, which reduces attack vectors and performance issues due to expensive operations,

for instance, the ones required by proof of work. Hyperledger Fabric added a novel way to deal

with privacy and confidentiality, through its channel architecture and private data feature9.

Fabric seems suitable for the public administration’s use cases. High throughput is needed

to handle access control requests, as well as to record the applicational logs. The multi-tenancy

offered by Fabric allows us to isolate two environments: access control, and the applicational

logs. Additionally, channels provide transaction privacy, while private collections allow for the

privacy of sensitive information. In particular, access to smart-contract logic, transaction data,

or the current state of the blockchain can be restricted.

2.1.4 Performance Evaluation

There are fundamental concepts associated with the evaluation of a blockchain solution. A

typical configuration for evaluating a blockchain’s performance comprises the test harness, which

is the software and hardware necessary to perform the evaluation, and the system under test, a

blockchain solution formed by several nodes (including the software, hardware, and networks).

Key performance evaluation terms, blockchain terms and key metrics as highlighted by the

Hyperledger Foundation10:

• Load-generating-client: submits transactions to the system under test on behalf of clients.

• Workload: defines how the system under stress is exercised. It should be representative of

the production environment.

• Faultloads: are a set of issued faulty transactions to benchmark blockchain solutions, by

simulating stressing conditions.

The following list defines common terms used to discuss the blockchain technology, with

regard to the evaluation:

9https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
10https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
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• Consensus: the fault-tolerant mechanism used to achieve an agreement on a single state

of the network.

• Commit: the point where a transaction is committed to the distributed ledger, held by

the network nodes.

• Finality: characteristic of blockchain technology. When a transaction is committed, it is

final and cannot be reverted.

• Network Size: number of validating nodes participating in the consensus.

• Reads: a read is similar to a query, and behaves as a transaction where there is no state

change.

• State: the state is the contents of the blockchain ledger at a specific point in time.

Blockchain systems are state machines, where every new block of transactions is a state

transition.

• Global State: a state which is shared across all nodes.

• Transaction: state transition that may change data, and follows specific rules.

• Endorsement policy: policy that defines which peers are required to endorse transactions,

concerning specific chaincode. Therefore, one can restrict a group of nodes to execute and

verify smart contracts.

2.2 Hyperledger Fabric

As referred in Section 2.1.3, Fabric allows for different kinds of participants in the network, which

facilitates the execute-order-validate paradigm for distributed execution of chaincode [3]. The

authors defend that execute-order-validate has advantages in relation to the usual order-execute

paradigm seen in blockchains like Bitcoin and Ethereum. Endorsement peers (endorsers) execute

(endorse) the smart contracts (chaincode) and return blockchain clients the validation output

of submitted transactions, which contain the endorsement peers’ signatures. This process allows

parallel execution and addresses non-deterministic code [52].

Chaincode is a key element in a Fabric network, as it dictates the rules to be followed by

member participants. It is run in Docker containers, and is, thereby, isolated from the shared

ledger. There are two types of chaincode: application chaincode, that executes the application

logic and communicates with the peers using gRPC messages, and system chaincode, ran on

the configuration channel. Chaincode can be deployed dynamically, and it usually is running
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concurrently on the network. It runs directly on the peers’ processes. The configuration channel

stores the definition of MSPs, the network address of OSNs, configuration about the consensus,

ordering service parameters, and rules on how the channel configuration is tweakable. Chaincode

executes transaction proposals against world state data, as the world state provides direct access

to the latest value of these keys. Given this, there is no need to traverse the entire transaction

log and calculate its values. Each peer contains a ledger component, formed by the block store,

which stores blocks containing transactions and the peer transaction manager (PTM). There is

a different ledger for each channel, as channels enforce chaincode and data isolation.

Channels allow participants to establish a communication path between the subset of par-

ticipants that have permissions to visualize a subset of transactions. For instance, in the same

network, there can be a subset of peers that have access to only a certain kind of transactions.

In addition to channels, Fabric supports private data, which allows a defined subset of organiza-

tions on a channel to isolate their data from others. In specific, organizations with permissions

can endorse, commit, or query private data, which is logically separated from channel ledger

data. In case of a dispute, private data can be shared and shown. For further privacy, hashes of

private data go through the orderer, instead of the data itself. It is disseminated peer-to-peer

rather than via blocks. When transaction data must be kept confidential from ordering service

nodes, it is a solution to use private data collections, rather than channels.

Fabric introduces a hybrid replication model, combining active and passive replication (primary-

backup-replication, ported to the untrusted environment). Concerning active replication or state

machine replication, the ledger state only reflects the transactions after these are validated and

the consensus is reached, concerning their ordering. Passive replication happens as endorsers

send the result of the transaction processing to commit nodes [52]. Fabric comprises three main

elements around data: world state, a versioned key-value store which corresponds to the dis-

tributed ledger; the transaction log, stores the history of all transactions (PTM); and a NoSQL

database, such as CouchDB, stores the world state. It is possible to restrict users’ access to

view and edit specific fields and only authorising the read-only permissions. CouchDB supports

complex data queries, comparatively to LevelDB, against the whole blockchain data, making it

a suitable solution when it comes to data analysis and auditing. LevelDB is the other built-in

option for storing the world state. It is a simple, fast key-value storage library that provides an

ordered mapping from string keys to string values.

Although Fabric does not have a built-in cryptocurrency, it is possible to create an underlying

token with chaincode, which can represent assets or rights to perform specific actions. Such assets

can be exchanged between network participants, through transactions. Participants can hold
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one or more peer nodes on the network. Fabric defines on its model several kinds of peer nodes:

• Committing peer. Each peer maintains the current snapshot of the current state of the

ledger, as a store of key-value. Such peers cannot invoke chaincode functions.

• Endorser peer. Endorser peers have chaincode installed. When they receive a transaction

proposal, they simulate the transaction execution on isolated containers. Based on that

simulation, such peers prepare a transaction proposal that is then sent to the orderer peer.

The existence of endorser peers avoids sequential execution of transactions by all peers.

• Orderer peer. Orderers receive endorsed transactions and assemble them into blocks. After

grouping transactions, orderers assure consensus, by propagating such blocks to commit-

ting peers, where they are validated and then committed to the shared ledger. Orderer

peers record valid and invalid transactions, while other peers only contain valid transac-

tions.

Additionally, Fabric defines anchor peers and leader peers. Anchor peers serve as an in-

termediary between peers from its organisation and peers from an external one. Leader peers

take the responsibility of distributing the transactions from the orderer to committing peers.

To achieve consensus, and given that there is an assumption of partial trust in a Hyperledger

Fabric network, Fabric uses a permissioned voting-based scheme, which achieves low-latency.

The endorsement policy defines the voting-based scheme to be used by peers and, consequently,

the weight of each peer regarding the validity of a transaction. The transaction flow, which

follows the execute-order-validate paradigm, is depicted in Figure 2.1, is as it follows:

• Transaction proposal. A blockchain client, which represents an organisation, creates a

transaction proposal, and sends it to endorsement peers, as defined in the endorsement

policy. The proposal contains information regarding the identity of the proposer, the

transaction payload, a nonce, and a transaction identifier.

• Execute (endorsement): the endorsement consists in the simulation of the transaction.

The endorsers produce a write-set, containing the keys and their modified values, and a

read-set. The endorsement peers execute the transactions, in an isolated environment.

The endorsement is sent as the proposal response and contains the write-set, read-set,

the transaction ID, endorser’s ID, and the endorser’s signature. When the client collects

enough endorsements (which need to have the same execution result), it creates the trans-

action and sends it to the ordering service. The endorsement phase eliminates any eventual

non-determinism.
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Figure 2.1: Fabric’s Transaction Flow [3]
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• Order : after the endorsement, there is the ordering phase, performed by orderers. The

ordering service checks if the blockchain client that submitted the transaction proposal

has appropriate permissions (broadcast and receiving permissions), on a given channel.

Ordering produces blocks containing endorsed transactions, in an ordered sequence, per

channel. The ordering allows the network to achieve consensus. The orderer broadcasts

transaction’s outputs to all the peers. For a correct ordering, there are some properties

that the system must comply to, defined as [52]:

Definition 1. Hash chain integrity: For any two blocks B delivered with sequence number

s, and B'delivered with s'at correct peers such that s = s', it holds B = B'.

Definition 2. Hash chain integrity: If some correct peer delivers a block B with number

s and another correct peer delivers block B'= ([tx 1 , . . . , tx k ], h') with number s+1,

then it holds h'= H (B), where H (·) denotes the cryptographic hash function.

Definition 3. No skipping: f a correct peer p delivers a block with number s > 0 then for

each i = 0, . . . , s - 1, peer p has already delivered a block with number i.

Definition 4. No creation: When a correct peer delivers block B with number s, then for

every tx ∈ B some client has already broadcast tx.

The ordering step assures all the above properties for each channel. The ordering service

broadcasts blocks to the peers that maintain the state of the ledgers, via the ordering

service or gossip protocol.

Fabric comes with both a CFT (Crash Fault Tolerant) and a BFT (Byzantine Fault Tol-

erant) consensus implementation. The CFT ordering service is based on Apache Kafka,

which is the reference implementation of the ordering service [26], whereas the BFT or-

dering service is based on SimpleBFT [11]. In Kafka, the leader orders transactions and

sends the results to replicas. Although Kafka is crash fault-tolerant, it is not Byzantine

tolerant, as faulty nodes can prevent the system from reaching an agreement. The consen-

sus is not limited to the agreed-upon order of a batch of transactions between peers, but

rather, it is also the result of the Execute-Order-Validate process that takes place during

a transaction’s flow from its proposal to its commitment on each peer’s ledger.

Definition 5. Validity: If a correct client invokes broadcast(tx), then every correct peer

eventually delivers a block B that includes tx, with some sequence number.

There is the need to note that the ordering service aims to achieve consensus and therefore

prevents the network from forks. Consensus in Fabric encompasses the whole transaction
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flow, from the transaction proposal to the committing. It happens at the transaction

level, where not all nodes need to engage in the consensus mechanism. Channels ensure

that messages are delivered in the same logical order to committing peers. The ordering

service achieves consensus in a deterministic way. As the ordering is deterministic, and not

probabilistic, as in Bitcoin, forks do not occur. Permissioned blockchains which rely on the

BFT replication protocols to achieve consensus can only support f out of 3f+1 faulty nodes.

This assumption may not match the trust model idealised for a specific application. The

endorsement policy establishes the trust model, which is decoupled from the consensus

mechanism, allowing developers to reason about the trust model independently of the

consensus algorithm [52].

• Validate. Firstly, each peer validates the received transactions by checking if a transaction

follows the correspondent endorsement policy. After that, a read-write conflict check is

run against all transactions in the block, sequentially. For each transaction, it compares

the versions of the keys in the read-set with those currently on the ledger. In case they

do not match, the peers discard the transaction. Finally, the ledger is updated, in which

the ledger appends the created block to its head. The ledger appends the results of the

validity checks, including the invalid transactions[3].

Figure 2.2: Example of a Fabric’s network [3]

Fabric has the following architectural components that support the transaction lifecycle:
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• Membership Service Provider : the goal of this service is to identify participants (authen-

tication) in the network uniquely. Public key infrastructure (PKI ) is used to generate

certificates which are tied to members and organisations. Each organisation issues iden-

tities to its members and every peer recognise the members of the organisation. The

identification is made through the association of a given peer to a cryptographic entity

(i.e., digital certificate). Different identity management protocols can manage the identity

of participants, such as LDAP and OpenID.

• Ordering Service: it manages multiple channels and comprises orderers and their processes.

The batching process occurs in this phase, in which validated transactions are received and

grouped into blocks. For each channel, after the transaction validation by the orderer, it

broadcasts state updates to the ledger, in an atomic way, following a consensus algorithm.

The ordering service can reconfigure channels and restrict broadcasting of transactions if

needed.

• Peer Gossip: the peer gossip is responsible for broadcasting the results of the ordering

phase, as well as transfer state for unsynched peers (recently joined, after a downtime, or

a peer is slower at validating the blocks before committing). Gossip data dissemination

helps to achieve consistency and data integrity across nodes. Since blocks are signed and

numbered, after a peer receives them, it can reconstruct the blockchain and verify its

integrity. Thus, the gossip protocol manages peer discovery and channel membership and

disseminates ledger data across peers on a channel.

2.3 Audit Logs

This section focus on related work regarding generalities about log files, applicational logs, audit

logs and blockchain audit logs.

Audit files generated by information systems not only allow administrators to monitor the

activity of users, providing insights about their behaviour [51, 9], but are also used by auditors.

Auditing processes utilise audit files and address validation, attribution and evidence. The

validation phase asserts if a subject has performed as expected. The attribution comprises the

identifies the subject that is not complying with the system. The evidence phase produces non-

repudiable support that holds attribution [54]. In order auditors to be able to reconstruct the

sequence of actions a user performed on a system, audit logs need to have integrity guarantees.

Conventional schemes for protecting data include the use of systems with weak security

models, which work with the assumption that the logging site cannot be compromised. Attackers
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have exploited these weak security models [33] and raised awareness about threats to data

integrity. Such threats and their realisation, as in log files tampering, is of paramount relevance,

as it may condition audits, as the data cannot be trusted. Furthermore, it allows the attacker,

insider or not, to delete his or her traces. Not only application logs data integrity is crucial, but

also leveraging mechanisms that distribute trust to that integrity.

The checksum is a string used to verify the integrity of information, in a computer system

[13]. Data is given as input to a checksum algorithm, and its result is later compared with

the digest of the transmitted data. If the checksum is not long enough, the probability of a

collision is higher (when another chunk of data yields the same checksum result), resulting in

false-positives. Checksums are simple, yet innefective ways of checking data’s integrity.

In [4] Bellare et al. propose a method to assure the integrity of data while assuring that data

before a certain point cannot be altered, in an undetectable way. A write-only logger creates log

entries to provide integrity guarantees. More advanced solutions use a third-party notary service

to prevent data-tampering, along with cryptographic hashing, and partial result authentication

codes [45]. Such solutions, although efficient, have a single point of failure, where the centralised

authority that grants integrity can collude with attackers [28]. Several solutions support forward

security but depend at least partially on a third-party. Such solutions, although suitable, does

not tackle the need for a trust distribution.

Schneier et al. [44] describe a method for making all entries before logging difficult to

the attacker to read, modify or delete undetectably. When audit logs are generated, its audit

authentication key is hashed. A log’s encryption key is derived from the authentication key,

in order to be possible to decrypt and read entries. Each log entry contains an element in a

hash chain that enables the verification of the previous log’s values. This system requires logs

to be generated before the attack and, foremost, the system does not provide a way to stop the

attacker from tampering entries.

Snodgrass et al. propose using a third-party notary service to prevent data-tampering on

RDBMS audit logs, along with cryptographic hashing, and partial result authentication codes

[45, 43]. A check field is associated with each tuple. Each time a tuple is modified, the RDBMS

generates a timestamp and associates it with the modified tuple. The tuples are hashed and

sent to the notary service. The service returns a unique ID, which is associated with the tuple.

In case an attacker changes the data, the ID returned by the notary service will be different,

and in that way, administrators can detect attacks. This solution implies that a third-party can

be trusted to delegate the integrity checks. This service can collude with an attacker and hence

is not for an ecosystem composed of participants with different incentives.
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Ma et al. propose an approach that supports forward security and compact aggregation of

message authentication codes (MACs), which depend partly on a third-party or with public key

infrastructure (PKI) signatures [28]. Log entries are combined sequentially using forward-secure

append-only signatures. This solution, although suitable, does not tackle the need for trust

distribution.

Ray et al. [40] propose a framework that delegates audit log management to cloud computing

services. The secure cloud-based log management service is based on cryptography, that ensures

confidentiality, integrity while performing operations on audit logs. There are solutions in which

a middleman is used to verify the integrity of data, and then send the report to the dedicated

parts [5]. Bharathi et al. propose this approach, introducing a third-party auditor (TPA).

As a drawback, this service requires that all stakeholders trust the third party. A distributed

ledger can help alleviate such problems derived from trust assumptions [62]. Combining existing,

settled methods with new approaches might lead to a suitable solution. In particular, distributed

ledger technologies can be leveraged to close the gap that exists concerning trust distribution.

Blockchain has emerged as a technology that promises advances in not only the integrity of

the data but also its availability and non-repudiability, all desirable characteristics to applica-

tional logs. Using such technology for such a goal might seem appealing, but one has to consider

its limitations - namely the low throughput, high latency, and storage problems inherent to

many blockchain infrastructures [21].

Some authors are exploring the the blockchain technology to create tamper-proof audit logs.

Sutton and Samavi propose a mechanism for log integrity and authenticity verification that

auditors can utilise [46], using Bitcoin. The proposed system logs proof integrity proofs on the

blockchain. There are three main entities on the system proposed by, the logger, audit log and

auditor. The logger creates the logs and stores them on the audit log. Auditors query the audit

log, which contains the logs created by the logger.

As events need to be non-repudiable, the logger signs the transactions, it submits to prove

accountability.

Furthermore, the logs need to have integrity assurances, so integrity proof digests of the

log events (i.e., cryptographic hash) are generated and stored on the integrity preserver (i.e.,

blockchain). Those records can be retrieved to participate in the process of compliance checking,

with log integrity verification. The solution has low throughput, as the Bitcoin blockchain can

only hold 3-7 transactions per second.

Cucurull et al. present a similar approach to Ma et al. since it combines MACs and DAs

(data auditors). The Bitcoin blockchain is used, as it provides distributed immutability [16].
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Figure 2.3: Privacy audit log generation process [46]

By using the blockchain, the logs are chained in the same order as they were generated. In

their proposal, the logger has a pair of signing keys and signs each log entry. Log entries can

be regular ones or checkpoints. Each log entry LogInfoi is chained with the previous one, using

a MAC cryptographic function. The logger concatenates the log entry with the hash of the

previous log entry, creating a proof of integrity hi−1. This process constitutes a chain of hashes.

A different random session key KJ can be used to prevent modification, deletion or addition of

intermediary entries.

Li = (LogInfoi, hi),where hi = HMAC(Kj , (hi−1|LogInfoi)) (2.1)

Log entries constitute the base of the integrity mechanism proposed. Checkpoint entries

are used to verify the authenticity and non-repudiation of the last block (j ) of entries. In each

checkpoint, the MAC session key used to chain the last block is disclosed so that other parties can

verify its authenticity. A new session key is generated Penc from time to time. A digital signature

of the entry is also created with the signing key (Ssig). This way, log tampering attempts are

detected. One can assure the authenticity of the integrity proofs by cryptographically signing

the issued transactions.

Chkj = Li = (LogInfoihi,Kj−1, E(Penc,Kj), Sigj , hi−1, hi) (2.2)
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hi = HMAC(Kb, (hi−1|Kj−1|LogInfoi)) (2.3)

Sigj = S(Ssig, (hi−1|Kj−1|E(Penc,Kj)|hi|LogInfoi)) (2.4)

This mechanism, shown in equations 2.2, 2.3, and 2.4, can detect the location of modifi-

cation attempts, which is an advantage compared to digitally signed logs. Distributed ledger

technologies can help replicate secure logs while keeping the properties described by the author.

However, this solution requires an infrastructure of servers (i.e., an infrastructure comprising

blockchain nodes), a mechanism to save the logs (i.e., blockchain client which communicates with

the logger) and a consensus protocol (i.e., enforcement policy). The blockchain then receives

integrity proofs, which are hashes of the checkpoints (Chkj). The integrity proofs can be later

compared with the actual log files, stored elsewhere, in order to check for manipulations. The

validation phase consists in retrieving the checkpoint hashes from the blockchain, recompute

them using the log files and compare their match in content and order.

Anderson and Smith propose AuditChain, a blockchain-based full-stack system to secure,

standardise and simplify health record audit logs [2]. In this work, identities are issued through

Hyperledger Fabric certificate authority and linked to a local user profile. Those identities

are linked to an organisation within the blockchain, having read permissions. Participants

can invoke chaincode query audit log entries. Organisations, such as a public hospital, can

invoke chaincode to create audit log entries. On top of the blockchain, the authors built a user

interface, to enable users to inspect the logs. A limitation of this system is a lack of a process

that links the authentication credentials from electronic health records systems that are used by

health professionals within an organisation to the cryptographic identities hold on the blockchain

network.

In [38], Pourmajidi and Miranskyy propose Logchain, a blockchain-assisted log storage sys-

tem. Logchain tries to decentralise trust on stakeholders that use a third party service. In

particular, Logchain goes towards granting the user protection against the tamper-motivation

cloud providers might have (in case of dispute, e.g. accruing from improper service provisioning).

Cloud participants have access to logs but, unlike JusticeChain, fine-grain permissions related

to audit are lacking. Privacy and performance problems with LogChain go pari passu, as the

system entails the usage of a permissionless public blockchain. Blockaudit [1] takes a holistic

approach to the problem of protecting audit logs from adversaries, by protecting both physical

access attack and the remote vulnerability attack, using a custom blockchain infrastructure.
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Author IC IA SPF D DP FGP

Cohen, 1987 [13] X x X x - -

Bellare et al., 1997 [4] X x X x - -

Schneier et al., 1998 [43] X X X x - -

Snodgrass et al., 2004 [45] X X X x - -

Ma and Tsudik, 2009 [28] X X X x - -

Ray et al., 2013 [40] X X x x - -

Bharathi and Rajashree,
2014 [5]

X X x X - -

Cucurull and Puiggal, 2016 [16] X X x X x x

Sutton and Samavi, 2017 [46] X X x X x x

Pourmajidi and Miranskyy,
2018 [38]

X X x X x x

Anderson and Smith, 2018 [2] X X x X X x

Ahmad & Saad & Mohaisen, 2019 [1] X X x X X x

Table 2.2: Features from contributions to audit logs.

Blockaudit leverages the PBFT consensus mechanism to protect audit logs. Blockaudit focuses

on securing logs and not in distributing trust towards that security, something that JusticeChain

aims to do. Furthermore, JusticeChain tackles privacy issues, by allowing only auditors to access

the audit logs they are allowed to audit.

Table 2.2 summarizes the contributions of different authors to audit logs.IC stands for in-

tegrity checking, and IA stands for integrity assurance. SPF represents if the solution has a

single point of failure, and D is used if the solution can decentralize information for different

stakeholders. DP means data privacy and FGP represents if there is the possibility to have

fine-grain permissions over accessing the stored data, validated by the blockchain.

2.4 Access Control

Access control is the selective access restriction to a set of resources. For that, one can introduce

the concepts of authentication and authorization. In Authentication, in which the requester

provides proof of its identity. After authentication, the authorization phase takes place, where

the access control system grants or denies access to a particular resource. Access control systems

grant or deny an authenticated subject the execution of a particular action concerning a resource,

as outlined in the corresponding access control policies. Access control policies are sets of rules

which define when a specific user should have access to a particular resource. At a high level,

access control systems contain three main elements: subjects, resources, and policies.

According to Zuquete [61], the defence against non-authorized activities has its difficulty

increased when the attackers belong to the organization that owns the information system. That
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is due to the abuse of privileges that the users have, in order to obtain what they need. Access

control systems have an essential role in preventing, discourage or avoiding data-tampering, such

as editing logs or sensitive information, by providing control access to information, managing

the users, to blocking unauthorized accesses to resources, such as information systems, files, and

applications. We should take into account that certain operations, such as accessing sensitive

information, should be recorded in order to leverage audits 11.

2.4.1 Access control on the computer

The most common access control methods in the computer occur at the operating system level. It

starts with the identification of a subject and the authentication [42]. When users authenticate,

they are providing the system proof of their identities. Authentication in the operating system

level can be done through passwords.

As referred, Access control mechanisms aim to provide a sound system that allows or denies

a subject to perform a specific action to a specific object, as outlined in the access control

policy. The access policies also define access control rules. Ultimately, we want to guarantee the

confidentiality and integrity of resources. The access control mechanisms that are going to be

described follow the reference monitor concept [35]. The reference monitor sets requirements for

a validation mechanism that enforces an access control policy on subjects that request access to

a particular object, on a system. They are complete mediators, tamper-proof, not by-passable

and verifiable [24]. Some of the most common access control models are:

• Mandatory access control (MAC)[22]: the system administrator specifies which subjects

can access specific data objects, by assigning them security levels. In this model, all data

objects have a security label attached, the classification and category. The category limits

access across security levels.

• Discretionary access control (DAC)[22]: in this model, the owner of the object specifies

who can access the object and its permissions. A popular implementation of this model is

access control lists.

• Role Based Access Control (RBAC)[19]: this model incorporates characteristics from MAC

and DAC. The system binds privileges with groups of subjects with similar responsibilities,

called roles. Using roles allow the administration to manage a high number of subjects,

by assigning each one with a role. Users are not able to delegate or assign permissions to

a role they are allowed to perform to other users.

11https://www.sans.org/media/score/checklists/ISO-17799-2005.pdf
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• Attribute-based Access Control (ABAC)12: Attributes are name-value pairs that are asso-

ciated with different identities. ABAC grants permission for a user to access a resource

based on his or her attributes, attributes associated with the application granting access

and environment variables. ABAC has a set of rules that are combined, following a certain

combining algorithm. Those rules have to be satisfied in order to grant access. ABAC is

indicated for fine-grain access controls, as it checks an arbitrarily complex set of attributes

against an arbitrarily complex set of rules. This model allows expressing rich, complex

access control policies. XACML is an implementation of the ABAC model, defined by

the OASIS consortium. It is an XML based language to describe attribute-based access

control policies. It also defines an architecture and a processing model to address access

requests, according to certain control access policies.

• Identity-based Access Control (IBAC) [25] : access is granted on a user-by-user basis. IBAC

allows fine-grain access control over who is allowed to use specific services and can access

resources.

• Entity-Based Access Control (EBAC) [8]: supports the comparison of attribute values,

and relationship traversing. This access control method leads to expressive access control

policies.

There are some implementations of these models, such as [37]:

• Access Control Directory : the objects (e.g., files, programs, network resources) have an

owner, that sets the access rights for other subjects, concerning a particular object. The

owner can revoke access to them.

• Access Control List : permissions over object are mapped into a list. It holds all subjects

and their permissions for a given object.

• Capability : a form of access control that has to be managed by the user. Usually, it is

a token that is unforgeable and gives its owner a set of rights over individual objects. A

key point in capabilities is propagation. A subject can send a copy of its capability to

another subject if it has permissions to do so. Frequently, capabilities are backed up by

more general structures, such as access control lists or access control matrix.

2.4.2 Authentication, authorization, and accounting

Network authentication, authorization, and accounting (AAA) is a control access methodology.

Authentication aims to provide an answer to the question, “Who is the client?” while authoriza-

12https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.html
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tion provides an answer to, “What is the client allowed to do?”. The Accounting, on its turn,

answers to the question, ”What did the client do?”. These fundamental security building blocks

enable networks to have effective and dynamic security. According to XACML, the components

of an AAA system are:

• Client : a device that requests access to a resource, on behalf of a user.

• Policy Enforcement Point (PEP): a device that requires a set of conditions to the client

to access the resource, by intercepting access requests from the subject.

• Policy Information Point (PIP): holds information about the environment, the clients and

their permissions.

• Policy Decision Point (PDP): decides to allow or to deny the client access to the resource.

• Policy Retrieval Point (PRP): used by the PDP to retrieve access control policies, for

evaluation against a request.

• Policy Administration Point (PAP): is the component responsible for managing access

control policies.

• Accounting : involves tracking usage during the lifetime of the connection, such as accesses

that the PDP grants or denies to the client.

A widely-used AAA protocols that mediate the communication between the PEP and PDP is

the Remote Authentication Dial-In User Service (RADIUS) protocol [7]. Figure 2.4 represents

the logical components of AAA.

The client is the device that needs authentication to access the network, on behalf of a user.

The authentication credentials, submitted by the client to the PDP (via PEP) are normally one

of the following types:

• Shared-key : A username is associated with a password.

• One-time password : a token is used to generate an access code valid for one access only.

This process has to be synced with a token server (PIP).

• Digital certificate: emitted and signed by an authority. This certificate contains informa-

tion about the entity it refers. It contains a private-public key pair, used for encrypting

and decrypting the same message.

• Biometric credential : based on what the client is, such as a fingerprint.
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Figure 2.4: AAA Logical Components [7]

When a client requests access to a network, the PEP sends a challenge. The PEP sends the

request information to the PDP. One of the most used protocols to make the connection between

the PEP and PDP is the RADIUS protocol [7]. The PDP queries the PIP for information about

the client requiring access. The communication can be achieved via a protocol called Lightweight

Directory Access Protocol (LDAP). The structure that saves users’ information is also called

LDAP. Another commonly used PDP-PIP communication protocol is Active Directory (AD),

based on LDAP, RADIUS, and Kerberos.

The PIP, which serves as a credential directory, holds an X.500 directory (also called LDAP

directory), accessed by either the LDAP protocol or RADIUS. The LDAP directory is held

in a Directory Service Agent (DSA) and is accessible by LDAP and RADIUS clients. The

most common DSAs are OpenLDAP and Microsoft Active Directory (MAD, or simply AD).

As long as there are several authentication servers, it allows scalability and redundancy on the

authentication. The PIP then validates or not the client’s credentials sent by the PDP, and

returns this information to the latter. PIP can also send additional information about the client

to the PDP. The granularity of this authorization is as good as the sophistication of the PDP.

The PDP now compares the information it has about the client against its configured policies.

It may also take into account the environment in which the decision-making process takes place

(i.e., time of the day). The PDP announces the authorization result to the PEP and writes that

result in the accounting system. The PEP applies the authorization granted by PDP, notifying

the client. If the authorization is successful, the client can now access the resource through

the PEP. Those categories are logical containers of functionality and, therefore, do not need

necessarily to be on different physical devices. For instance, one can concentrate PDP and PIP
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in one logical container, as well as joining PDP and Accounting.

The underlying idea to include the blockchain technology into an access control system is

using it to serve as the PDP, PIP, PAP and accountability system. A comprehensive introduction

to the blockchain technology is done, to us to understand if it can be a viable solution.

2.5 Blockchain Access Control

This section reviews the state of the art blockchain-based access control methodologies. New

distributed software architectures leverage the blockchain, as it is a technology that enables

to decentralize data and code execution, across untrusted participants. Updating or removing

blocks on a blockchain is not possible - this is desirable when we want to achieve integrity, for

instance, an access control log. Since all blocks are connected, traceability is also achieved,

making it possible to reconstruct the sequence of operations a user performed in an information

system.

Zyskind et al. conceptualize the blockchain technology as an access control moderator,

complemented by an off-blockchain storage solution [62]. Blockchain clients representing users

that provides its data to a service provider are the owners of their data. Based on that premise,

this solution is meant to empower users, so they have the information about which data is

collected about them by third parties and how their data is used. For achieving that goal, each

data owner can issue transactions, used to change the set of permissions granted to a service or

entity. Each transaction is recorded on the blockchain, allowing for auditability and traceability.

Laurent et al. propose a fine-grain blockchain-based access control solution, complementing

the approach referenced before [34]. In this solution, there are several entities: the blockchain

infrastructure, the data owner (DO), data retriever (DR), and the data storage provider (DSP).

The DSP governs host application services that hold DO’s data. The DO is the entity responsible

for attributing access rights for its resources, stored on a DSP. The DO defines those accesses by

whitelisting DRs, the entities that require access, with a specific access control list in a smart

contract, stored on the blockchain. The smart contracts containing the whitelists are final, but

hold variables that are referring to the entities that have permission. Therefore, it is possible

to a DO to dynamically assign or revoke permissions to a certain DR. The DRs are blockchain

clients that can access content stored in remote servers depending on the permissions recorded on

the blockchain by DOs. The idea is the blockchain to participate in the authentication of each

DR in respect to DSP, before granting access. Blockchain properties leverage identification,

authentication, auditability, and data integrity, as it prevents the control list to be altered.

Figure 2.5 illustrates the white list creation process.
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Figure 2.5: Whitelist creation process [34]

1) Firstly, the DO contacts the DSP, expressing which resources are there to protect. 2) After

that, a smart contract is created on the blockchain, containing a whitelist with the authorized

DRs and fine-grain access control rules (access control lists). The DO can alter the whitelist,

and it is empty when it is instantiated. 3) The DO shares the address of this contract with

the DSP, along with the files to protect. 4) After that, it contacts each DR and sends the

contract address. 5) The DO collects DR addresses that are meant to be granted permission to

specific resources and updates the whitelist with their addresses. 6) The whitelist is updated.

The blockchain records all changes. In practice, we can see which DO whitelist each DR, for

each resource associated with a specific DSP, with specific permissions. This process allows for

fine-grain access control. When it comes to a DR to access data, it sends an access request to the

corresponding DSP. The DSP sends the key to the DR) and starts listening to the blockchain for

transactions signed with that key. The DR sends a transaction to the smart contract containing

the key, resulting in leaving a trace on the blockchain. When the DSP detects a transaction

with a given nonce, it matches the issuers’ address with the ones on the whitelist specified by

the contract. In case it matches, the DR is identified and granted access (or not) to the required

resource. In this solution, the blockchain identifies DRs and DOs, by their address.

This solution misses some key points that are essential to address a suitable solution to the

problem proposed. This solution assumes that a data owner-centric model, in which for each

outsourced data resource the DO creates a smart contract. Besides that, every authorization has

to be declared explicitly (judge X can access resource Y), which can add considerable overhead

to the implementation process. Furthermore, this solution is implemented with Ethereum, a

public blockchain that comports overheads, such as the payment of gas. Zhang et al. propose a

solution directed to Internet of Things (IoT) blockchain-based access control [59]. The authors
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introduce the concepts of Judge Contract (JC), Register Contract (RC) and Access Control Con-

tracts (ACC). Access control contracts store access control policies for a subject-object pair. In

this system, both the JC and RC are essential pieces when it comes to achieving distributed and

reliable access control. The JC receives misbehaviour reports and applies penalties according

to them. The RC stores the misbehaviour information from the JC and manages misbehaviour

judging method. Moreover, it stores information such as name, subject, object, and smart con-

tract, for access control. In this solution, all entities controlled are peers in an IoT network.

Nonetheless, the concepts of JC and RC are useful in the context of this study, in particular, to

leverage effective auditing techniques. Maesa et al. propose a blockchain access control solution

based on an XML-based Language which expresses attribute-based access control policies [29].

Policies define access rights on resource R, defined by the resource owner P. After that, policies

might be updated or revoked by the resource owner. Each policy identifies the affected subject

unequivocally, and the conditions (attributes, environment) for the access to be granted. Al-

though the authors implement this solution with an ABAC model in mind, it can be extended to

cover other access control models. XACML defines a reference architecture for the access control

framework that is going to be introduced. A PAP is responsible for translating XACML policies

to smart contracts (smart policies). These smart policies, written in the Solidity programming

language, are stored on the policy repository, the blockchain, with a transaction. In this solution,

the policies and the rights are visible on the blockchain, and this connector allows for access

rights to be transferred amongst subjects. This process allows for distributed auditability, as

any participant can know at any time the policy associated with a set of resources and subjects.

Subjects might transfer permissions through a transaction. Attributes from subjects, resources

and the environment are stored in smart contracts. Smart contracts are collected by the PIP

when a request is made.

In this solution, permission transfers are possible and are always a subset of the current

permissions over an object, which means that the previous conditions cannot be violated. The

new conditions are more restrictive than the original ones. The subject trying to access a resource

authenticates with the PEP. The subject might be required to sign a challenge with the private

key corresponding to the identity it used to get the access rights in the smart contract. The

information is passed to the Context Handler (CH), that interacts with other components. The

CH sends the request to the PAP. The latter retrieves the smart contracts related to the request

(first policy and its updates) and returns it to the CH. The CH queries relevant attributes from

the PIP and redirects them to the PDP. The PDP evaluates the decision and returns it to the

CH. The CH forwards the decision to PEP, which enforces it, resulting in the request being
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executed or not. Transparency is achieved by saving the smart contracts that encode access

control policies on the blockchain and tracking updates to the policies.

Although this solution might seem to address the problem given, there are some significant

drawbacks. Subjects have the right to freely exchange action rights between themselves without

interacting with the policy issuer (can be the resource owner). The XACML format is massive,

even compressed. A lighter object notation, like JSON, could be a better fit. Additionally, non-

explicit access control rights transfer can be dangerous if not well controlled, as that implies that

the policy issuer does not know in advance who will be accessing resources from a given policy.

This model constitutes an issue because users should not be able to exchange rights without

permission, on sensitive scenarios. There are also privacy implications with this approach, as

every node on the network knows which policy is associated with a specific user. Privacy concerns

can also arise, as all participants can access the defined access control policies.

Maesa et al. complement the solution mentioned above by introducing some novelties [31].

The general idea is the same, to implement an access control service on top of the Ethereum

blockchain. The blockchain is used to store smart contracts that represent access control policies

and to perform the decision process. Such smart contracts are called smart policies (SPs). Thus,

SPs are responsible for the policy evaluation process, embedding a PDP for a specific access

control policy. Each time an access request needs to be evaluated to make an access decision,

they are executed, by the blockchain, in a distributed way. The decision is made based on

information concerning the users. For this purpose, the concept of Attribute Manager (AM) is

introduced. AMs are the components that manage the attributes of the entities involved in the

process, such as subjects, resources, and environmental context. AMs can update and retrieve

its values and are created by an entity, the attribute provider (AP).

User Resource owner

Frontend

PEP PAP

CH

Blockchain

CH

PIP
PDP

AM

AM

Figure 2.6: Blockchain-based access control service architecture [32]
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Furthermore, the part of the smart policy that invokes the smart AMs is considered a PIP,

because it is the interface that allows interacting with the AM, retrieving its attributes. In

a high-level view, the decision-making (PDP) is achieved through the SP execution. Smart

function calls on the SP realize the PIP function, as they retrieve necessary attributes. SPs

can be revoked and, therefore, not callable anymore, allowing for dynamic access control policy

management. The SP is still accessible and seen in the blockchain, as the ledger is append-only.

This method allows for an access control mechanism that relies on the blockchain technology.

The concepts of PEP and CH are the same as previously referred. The CH is divided between

a blockchain component (CHB) and off-chain component (CHO). The CHO is responsible for

interacting with the blockchain (with the different SPs), on behalf of the PEP and PAP. The

SPs perform the role of the CHB, as communication in the blockchain is achieved through smart

contract calls and event firing. For simplifying, we refer the CHO as the CH.

Regarding the workflow, the first step is to create XACML policies. Then an administrator

uploads policies to the PAP, which translates them into SPs. SPs are deployed to the blockchain

by the CH. The PAP keeps a reference to the deployed policy. When the PEP intercepts

an XACML access request, it redirects it to the CH. It then parses the request, obtaining

the resource ID and other attribute values necessary for a decision. It then queries the PAP

for retrieving the address of the smart policy paired with that resource. The CH sends a

transaction containing a call to the evaluate method of the corresponding SP. The SP retrieves

the necessary information from the AMs, and the PDP evaluates the request. After the SP

evaluates the request against the policy, it returns the decision to the CH. The CH redirects the

decision to the PEP that on its turn enforces it.

In this solution, both the PAP administrator and the subjects need to have an Ethereum

wallet, which makes the setting cumbersome. Moreover, the PAP would have to pay for each

access control policy deployed, whereas the subjects, would have to pay gas for each access

request.

Uchibeke et al. developed a Blockchain Role-Based Access Control Business Network (BR-

BAC BN ), based on Hyperledger Fabric, which is used as an access control layer to cloud

computing environments and big data services [50]. The BRBAC BN is used to verify that an

entity has access to a dataset represented by an ID. The ID can represent an asset, a query

that retrieves data or a function that pulls data from an external repository. This solution aims

for peer-to-peer authorization grants, i.e., a user can grant or revoke permissions required by

another user concerning a specific asset. The data model of this solution comprises a person

participant, a data asset and a request, grant, revoke, verify and view transactions. Participants
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Author D FGP S PB MS

Zyskind et al., 2015 [62] X X x x x

Laurent et al., 2018 [34] X X x x x

Zhang et al., 2019 [59] X X x x x

Uchibeke et al., 2018 [50] X X x X x

Maesa et al., 2019 [32] X X X x x

Table 2.3: Features from contributions to blockchain access control.

who join the network can issue one of the transactions defined in the business network. The

asset owner can grant or revoke the request to an asset. The ledger is updated when there is an

accepted authorization. The user that views the ledger can query the blockchain and have access

to the access control decision. This solution does not tackle the use case of a decentralized access

control framework which distributes trust and responsibility between organizations, which are

stakeholders of an information system.

Table 2.3 summarizes the contributions of different authors to blockchain-based access con-

trol. D stands for decentralization, and FGP stands for fine-grain permissions. S represents the

scalability of the system (where there is no need to explicitly map a user to have the rights to

act on an object, on a specific context). PB represents the usage of a private blockchain. MS

represents support to multi-stakeholder scenarios, in which there might be several administrators

of the network.

2.6 IGFEJ

This section presents insights about processes at IGFEJ, the systems they administrate, and

the functional and non-functional requirements for JusticeChain. IGFEJ administrates several

relevant systems for the Portuguese Republic, in which a blockchain-based solution could improve

their logs’ resiliency:

• CITIUS – Magistrados Judiciais, CITIUS – Ministério Público and CITIUS – Entrega

de Peças Processuais e Documentos por Via Electrónica. Those are more commonly just

referred as Citius. Citius serves the necessities of judicial magistrates and aims to expedite

judicial courts processes.

• Sistema de Informação dos Tribunais Administrativos e Fiscais (SITAF). It aims to stream-

line processes from fiscal and administrative courts.

• Other systems less relevant to the context of our problem, such Sistema Informativo de

Custas Judiciais (SICJ).
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All the systems above depend on IGFEJ. Figure 2.7 represents one of the primary use cases

of the Citius system 13.

Figure 2.7: Use cases of Citius addressed in this thesis.

Citius’ stakeholders are IGFEJ, Inspeção-Geral dos Serviços de Justiça (IGSJ), Conselho dos

Oficiais de Justiça (COJ), Procuradoria Geral da República (PGR), and Conselho Superior da

Magistratura (CSM). The stakeholders with respect to SITAF are IGFEJ, PGR, COJ, Conselho

Superior dos Tribunais Administrativos e Fiscais (CSTAF) and IGSJ. IGFEJ develops and

maintains Citius, while COJ, PGR, and CSM represent Citius’ end users: judges (magistrados);

court clerk (funcionários de justiça); and probation officers (oficiais de justiça. IGSJ and CSTAF

are entities which are likely to be involved in the auditing of Citius. Citius has approximately

ten thousand users. Citius is managed by IGFEJ, by a development and operations’ team. For

the sake of simplicity, we refer to the teams that develop, operate, and administrate the system

as Citius development team.

The authentication at Citius is made through the LDAP protocol with a Microsoft Active

Directory (AD) server stored on the cloud. The AD is used to authenticate users and manage the

domain’s policies. Authorization concerning posterior requests is done locally, with a resource

to a component embedded on the application. The application which implements the interface

to access the protected resource embeds the PEP. Regarding authentication, judges have two-

factor authentication, a username-password pair, and a smart card. Probation officers have

a username-password keypair. Both groups are vulnerable to social engineering, as peers can

easily pick their credentials and act on behalf of them. The sequence diagram that represents a

13https://www.citius.mj.pt/portal/article.aspx?ArticleId=0

35



login is depicted in Figure 2.8.

Figure 2.8: Citius’ login request flow

For the sake of simplicity, we omit the user interface from this flow. The user inserts the

credentials on the client component. The component sends it to the PEP, which redirects

them to the PDP. The PDP contacts the PIP and retrieves the necessary attributes to proceed

to the authentication. In this case, it compares the username-password provided with the

one stored on the AD. The PDP decides and communicates that decision to the PEP, which

redirects it to the client. The login is recorded on the AD logs. The flow for an access request

(authorization) is similar. The difference lies in the PIP. In Citius, as the authorization is

made locally, the PIP is a local database. The accountability is achieved through writing the

authorizations provided on text files (via database triggers).These text files hold information

about the user’s activity, including access requests towards different resources, user activity

and user’s personal information. Such data is stored on the same local database. Twenty-
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Figure 2.9: AAA architecture of Citius

three databases serve the system, being each one a PIP, one for each legal division of the

courts (comarca). Each comarca has its logs, kept locally, without availability or redundancy

guarantees. Those constitutes a point of attack, where attackers can several attack vectors to

compromise the integrity of data and, thus, the audits performed over that data. Section 3.7

provides details on the implementation of a possible solution to this problem.

Furthermore, the administration of accesses is kept to local teams. As a consequence, we

obtain weak access control mechanisms concerning the authorization. Similarly to the authen-

tication, the authorization should be uniformized, allowing for scalability and decentralized

control. Audit logs created by IGFEJ’s systems are fragmented across several different applica-

tions, and have different formats, making cumbersome crossing logs in case of several systems

being attacked. Chapter 4 provides an additional contribution that secures logs and at the same

time tackles the authorization issues at Citius. Citius’ architecture is depicted on Figure 2.9. In
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this chapter, we presented central concepts on blockchain technology, in particular on permis-

sionless and permissioned blockchains. Next, we introduced Hyperledger Fabric, as the chosen

infrastructure to solve the proposed problem. We reviewed the state of the art blockchain-based

access control. Finally, we introduced IGFEJ, the organisation that provides this thesis with

a real case. Next, we propose a solution that enables Citius’ stakeholders and end-users to

benefit from a more secure system, which facilitates (through the tamper-proof logs) the iden-

tification of a culprit, in a breach scenario. IGFEJ and the stakeholders of Citius benefit from

the transparency offered by a blockchain solution, allowing the government to distribute trust,

responsibility and streamline the audit process.
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Chapter 3

JusticeChain’s Design and

Implementation

To explore and evaluate the ways that permissioned blockchain technology can improve audit

logs creation and security, we propose JusticeChain, a full-stack application, composed by the

blockchain client components and the blockchain components. JusticeChain protects audit log

data by loading it on a permissioned blockchain, which is composed of several peer nodes, be-

longing to different organisations. In particular, a consortium between the different stakeholders

is formed to audit and manage audit logs.

Hyperledger Fabric provides the underlying permissioned blockchain functionality, which

provides data integrity, stream integrity (correct order of data), forward integrity (the attacker

can erase log entries, but cannot otherwise modify an existing entry or create new entries with

logging time preceding his break-in time) [4] and non-repudiation (an entity cannot dispute its

authorship toward the creation of a log). Chaincode manages audit log creation and access by

enforcing both legal requirements and professional recommendations for audit log records. As

chaincode handles creation and retrieval of audit log data, it also imposes a standard structure

on this data, achieving interoperability for participating provider organisations. As the ledger

is append-only, audit log data cannot be altered once committed to the ledger. Moreover,

chaincode allow us to implement automatized auditing techniques if needed. The solution’s

user interface presents the information stored on the ledger in a readable and useful format

to users. Users have their local authentication linked to the authentication credentials from

Fabric’s on-chain cryptographic identity management service.

JusticeChain allows to evaluate the central question of this thesis: how can the properties of

a private, permissioned blockchain, such as Hyperledger Fabric, improve the resiliency of logs at

the Portuguese government? In this chapter, we start by introducing the system requirements.
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Secondly, we present the implementation and design decisions of JusticeChain.

3.1 Requirements

Systems administrated by IGFEJ (e.g., Citius, SITAF) are expected to maintain audit logs that

ensure trust in the application data and application state and provide tamper-resistant evidence

of the modification of such state. The non-functional requirements of JusticeChain are:

1. Tamper-Resistant. The system should ensure that audit logs are tamper-resistant. In case

a node suffers a remote attack, or even an internal access attack, JusticeChain can stop

the attack, as other nodes hold the global ledger. We also expect JusticeChain to ensure

tamper-resistant audit logs in the presence of byzantine nodes (faulty or dishonest nodes).

2. Adaptability. As the reality of IGFEJ is evolving, there is a need for an adaptable solution.

The solution should be flexible enough to be adapted to similar use cases (e.g., protecting

applicational logs other from Citius).

3. Low latency and high throughput. As audit logs are generated in real-time and persisted

in the system database, JusticeChain needs to achieve low latency while maintaining the

capacity of processing a large number of transactions per second (high throughput).

4. Auditability. The system should make available a set of audit logs to auditors, in function

of their credentials and the context of the audit. Access to audit logs should also be

recorded and thus, auditable.

5. Availability : the system should be functioning in proper conditions, with minimal down-

time.

6. Privacy : the solution should assure privacy concerning the contents to be protected. It

should allow for the possibility of choosing which network nodes can access applicational

logs. Following the principle of the least privilege, only auditors related to a particular

system can access its logs.

7. Scalability : The solution should offer the possibility of adding more nodes to the network,

while not compromising significantly the performance (i.e., adding one more node should

not reduce the throughput significantly). The solution should support at least two nodes.

8. Testability : it should be possible to test the solution in a non-production environment

(i.e., emulating higher workloads).
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9. General Data Protection Regulation (GDPR) Compliance: the system should anonymise

personal data before the blockchain records it.

JusticeChain must operate in a distributed way with smart contracts running on multiple

hosts, in order to distribute trust. Although IGFEJ should not be able to insert, modify or delete

data, it should have the privileges to govern the network. Concerning functional requirements,

the solution should be able to manage logs securely. Those include:

• Store applicational logs

• Retrieve applicational logs

• Manage the audit authorizations

• Verify logs’ integrity

• Verify auditors’ compliance

The Citius system should be able to securely store logs through our solution, and provide

data integrity guarantees. Auditors, both from IGFEJ and an external independent organisation

should be able to retrieve applicational logs, only when needed. External auditors should also

be able to verify that no auditors have access to audit data when its not needed. Moreover,

auditors should be able to verify logs’ integrity. The use cases that the solution should tackle

are expressed in Figure 3.1.

3.2 Threats to Data Integrity

The more unlikely an attacker is to change the data, the stronger its integrity. Gaetani et al.

propose that data integrity is a quantitative concept, rather than a simple binary property [21].

In order to quantify how well our solution addresses threats, we evaluate the vulnerabilities with

the current systems administrated at IGFEJ (i.e., Citius), and we present its threat model. We

propose the security model objectives in order to enhance the system’s resiliency to different

attacks. Based on the threat model and security model, one can aim to a fine-grain evaluation

of the solution, concerning data integrity requirements.

JusticeChain improves the log resilience in the two following ways: it records applicational

logs from information systems with different stakeholders and secures them on the blockchain; it

decentralises the storage of such logs, resulting in higher redundancy and availability. Therefore,

it allows authorised auditors to analyse the usage of the system with integrity guarantees. The

auditing process is decentralised and transparent for all participants on the network, due to
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Figure 3.1: Use cases concerning applicational logs

smart contracts that inspect logs. This section presents the threats to which logs are exposed.

The threat model will focus on three factors: i) internal access attacks ii) remote attacks and

iii) Hyperledger Fabric blockchain attacks.

We assume that there are two types of adversaries. A third-party adversary, Adversary At,

can access the trusted computing base and remotely penetrate the system, by exploiting security

flaws or by hijacking root user credentials. Stemming from this, At might tamper audit data

to compromise auditing and forensic procedures or tamper system data to cause damage to the

organisation. On the other hand, an adversary from within the organisation, Adversary Ao can

be an employee with root privileges. Such a person can access the databases at will and can be

motivated to tamper data for personal gains. Such adversaries can tamper data to hide their

traces or tamper data to aid third-parties illegally.

There can be two main types of attacks to data integrity: the physical access attack and

the remote vulnerability attack [1]. In the physical access attack, the adversary Adversary At or

Adversary Ao have access to the critical system components. The attacker generates transactions

to change the current values of the objects held in a database. As objects are being updated, the

database generates an audit log, tracking the changes made by the attacker. The attacker then

focuses on deleting the evidence by deleting the generated audit logs or changing its content.
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The attacker can manipulate the auditing process by modifying the history maintained by the

audit log.

As a consequence, the obfuscation of illegal activities and impersonating someone’s actions

can occur. In remote vulnerability attacks, the attacker exploits default vulnerabilities on sys-

tems, such as software malfunctions and security vulnerabilities (e.g., SQL-injection). Although

such attacks are common [6], corporate organisations have their systems and databases secure

against conventional attacks. We assume that IGFEJ is protected against remote vulnerability

attacks, and focus on the most damaging type, the physical access attacks. Five threats compose

the threat model:

Threat 1. Log tampering from an external element: An attacker violates the integrity of the

applicational logs, by editing them.

Threat 1 (T1) is an external adversary gaining access to the logs. Having access to the logs,

attackers can edit the logs at their will, i.e., deleting arbitrary entries. This attack has a higher

severity on information systems which do not replicate logs as the attacker can permanently

delete information.

Threat 2. Database tampering from an internal adversary: An attacker from one of the stake-

holders violates the integrity of the applicational logs, by editing them directly.

T2 is similar to T1, with a higher degree of severity. If adversaries are insiders, they have

direct access to the protected resource. An internal adversary might know peculiar ways to

obfuscate such activities.

Threat 3. Log tampering by the system administrator: The administrator of the system, with

the highest permissions, violates the integrity of the applicational logs, by editing them. There is

the possibility of obfuscating activity traces by deleting evidence on other systems (e.g., RADIUS

logs).

Threat 3 (T3) is similar to T2, with higher severity. Administrators have access to all

resources and can, theoretically, delete all traces. The usage of a blockchain can prevent the

threats as mentioned earlier. Nonetheless, such a method has its threats to data integrity.

Threat 4. A participant edits logs that are protected by the blockchain.

T4 is not severe, if using a permissioned, private blockchain, like Hyperledger Fabric (Fabric),

because transactions have to be endorsed before committed. Even if any participant on the

network tries to modify the applicational logs maliciously on its ledger, they cannot change

other peers’ ledger state, as honest endorsers would not endorse such transactions.
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Threat 5. The majority of participants conspire and modify the logs.

T5 evolves from T4, where the minority of nodes try to tamper logs. Members from the

network can collude to alter the logs’ integrity, to trick an external auditor. If all participants

on a network want to change its state, it is theoretically possible. The participants can follow

the protocol and rewrite the world state, submitting new transactions from the point on in which

they want to change the state.

Threat 6. Real decentralization is at stake with one administrator

T6 is related to the fact that the distribution of trust seems incompatible if there is only one

entity responsible for the systems. Although one could initially consider only one administrating

organisation, IGFEJ, this does not achieve real decentralisation. It is crucial to assure that

every organisation has an active role in the process, being IGFEJ the main but not the only

administrator of the network. Although IGFEJ could be the only administrator, this does not

grant that organisation the ability to corrupt the state of the digital ledgers, assuming that

participants do not collude and that the system is configured correctly, as discussed in Section

3.7. Including nodes from other organisations lowers collusion risk, and thus increases the

robustness of the solution.

The fact that Fabric allows the creation of a permissioned blockchain (updates to the configu-

rations of the system and deployments of smart contracts are recorded), where often participants

are vetted, allows reducing the risk of collusion. This process enables the straightforward identi-

fication of the subject that initiated specific actions, being a demotivating factor for adversaries.

Although Fabric is not tamper-resistant, in practice, under a strict endorsement policy, it can

provide a high level of trust. Performance can be enhanced and threats minimised by tuning

the definition of the structure, including but not limited to the endorsement policies, number of

peers, nature of peers, peers’ permissions and external backup guarantees [48].

3.3 Preliminaries on JusticeChain

So far, we have discussed the advantages of audit logs, their vulnerabilities and the existing

solutions that address them. Furthermore, we have studied the suitability of blockchain tech-

nology to enhance audit logs. We presented a threat model to outline adversarial conditions

and possible actions. In this section, we leverage this knowledge to meet the requirements of a

blockchain-based audit log solution that tackles the needs of Portuguese justice.

The use case addressed in this thesis presents four characteristics: i) the participants are

willing to cooperate but have limited trust in each other, ii) the trust and responsibility of
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managing the logs belong to all stakeholders, iii) one or more organisations should be able to

administer the network, in accordance with the governance model, and iv) different participants

(end users) have different access rights to data. Regarding the first and second characteristic,

consensus mechanisms ensure that no single entity controls the blockchain. As far as the third

point is concerned, Fabric allows decentralised management of the ecosystem, allowing for mul-

tiple administrators. If IGFEJ is the only administrator, the representation of IGFEJ could

be divided into several nodes that represent different teams with different interests and differ-

ent administrations within IGFEJ. Concerning the fourth characteristic, specific permissioned

blockchains, such as Hyperledger Fabric allow the delegation of a different level of control to

specific participants [3]

Besides the mentioned characteristics, there is the possibility of not all entities to be faithfully

collaborating, by executing the consensus protocol, which can lead to undesired states of the

network [45]. This risk is much higher in public blockchains, leading to attacks as the 51%

Attack [57]. Such risks are diminished by utilising a permissioned, private blockchain as Fabric.

Moreover, Fabric utilises an endorsement policy to validate transactions, meaning that tolerance

towards Byzantine nodes is a function of consensus defined on the endorsement policy to be

applied. The stricter the endorsement policy, the more resilient the network is. This fact leads

to the decoupling between the consensus algorithm and security model.

A blockchain participant represents a stakeholder which participates in the blockchain. We

assume that all participants have limited trust (i.e. have different political or economic incen-

tives) in each other and participate in the same channel. Member participants control peer

nodes which maintain the ledger and may endorse transactions. This research assumes that

there is at least one member participant that owns an information system, and has a Logger

that records the logs of the first on the blockchain. We assume that, in case of an attack, one

or more nodes, composing the minority, are colluding to change applicational logs. Addition-

ally, communication within the blockchain ecosystem is done using secure channels (i.e., using

SSL/TLS). We assume the machines running nodes are physically separated, so one organisation

could not subvert other’s peer nodes.There are three actors (participants) who take part in the

ecosystem:

• Logger. Loggers receive log entries from an oracle connected to an information system.

Database transactions are capptured by an object-relational mapper, and sent to the oracle.

Such transactions are generated in Citius’ databases when an user performs access control

requests. After retrieval, a pre-processing stage might occur, to normalise log entries.

After that, the logger sends HTTPS requests to a Representational State Transfer (REST)
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Application Programming Interface (API) to store the audit log entry. Loggers act as

blockchain clients and use oracles.

• Auditor. Auditors audit secured applicational logs on behalf of an organisation. Auditors

have a set of permissions, allowing for fine-grain permissions for auditing purposes.

• Network Administrator (admin). An admin manages the blockchain configurations. Re-

sponsible for creating and managing participants within the blockchain, such as Loggers

and Auditors. Admins should belong to the organisation that maintains the system that

generates logs. In case there is more than one admin, a quorum should make decisions.

The authentication of Loggers (PUL,PKL), Network Admins (PUN ,PKN ) and Auditors

(PUA,PKA) rely on public-key cryptography (PKI ) [17] and public-private key pairs (PU, PK),

leveraging Fabric’s certificate authority (CA). We assume that only the owner of a key pair

knows the private key (PK), whereas all participants know the public key (PU).

3.4 Data Model

JusticeChain has a data model that addresses the business concerns about managing applica-

tional logs. In particular, applicational logs can only be created and accessed by identified,

authorized parties. As JusticeChain needs different participants with different responsibilities,

a set of participants were defined, along with a permission set. Participants defined in Section

3.3 interact with the data in the following ways:

• Network Administrator (Admin). An Admin has the following permissions: can see the

whole ledger, the whole transaction history and update participants. Network admins

cannot create, update or delete applicational logs.

• Auditor. An Auditor member (external from the organizations directly involved in the

network) participates in the network, monitoring the flow. If the adversaries try to change

their attributes, the auditor node will know, as there will be state inconsistencies across

nodes. Permissions: Auditors cannot create, update or delete applicational logs. Auditors

can only see part of the ledger - logs associated with the auditor’s organization. Auditors

can only see the transaction history that affects the network configuration and the logs

associated with their organization.

• Logger. A Logger can be active (records logs) or inactive (does not record logs). Loggers

have a level, which allow to tune the level of detail of the logs. Levels follow the standard
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RFC 5424 [23]. For instance, the INFO level designates informational messages that expose

the flow of the application at coarse-grained level. The lower the logging level, the higher

the granularity. Permissions: Loggers cannot update or delete applicational logs. Loggers

can create logs associated with one information system. For instance, a Logger associated

with System A can create an asset type Log-A, but cannot create an asset of type Log-B.

Loggers can see their transactions and the transaction history that refers to the state of

the ledger.

Furthermore, the ecosystem has Assets. An asset represents anything of value, including

physical and non-physical assets. The asset we aim to protect is the log.

• Log Entry : A log entry (or simply log) has an unique identifier, making it possible to unam-

biguously identify each log entry. A log entry has a blockchain timestamp, corresponding to

the timestamp of the transaction on the blockchain, and a entry creation timestamp. The

entry creation timestamp refers to when the entry log is generated in an external system

from the blockchain, e.g., Citius. Moreover, the log entry contains an associated Logger

and case-specific attributes. More log types can be defined, depending on the amount

of information systems participate in the network. Logs have been implemented taking

into account the Conselho de Ministros’s technical recommendations1 for the security of

personal data on public adminstration’s information systems.

The UML class diagram for JusticeChain’s data model is present on Figure 3.2. The class

Log Entry, or simply Log, allows the system to scale to different business needs. CitiusLog

and CitiusLog30 contain 20 and 30 attributes, respectively. Administrators have permissions

to manage Auditors and Loggers. Auditors can access Logs, while Loggers can create them.

Loggers create Logs recurring to transactions, that issue the execution of chaincode that creates

logs.

Transactions are requests to the blockchain to execute specific chaincode. Transactions can

affect participants and assets. Chaincode written in Javascript2 creates logs that are recorded on

the immutable ledger, via a transaction issued by a blockchain client. The types of transactions

are:

• Create Log : This transaction creates a Log type. An event New log is triggered. Only

Loggers can issue this kind of transaction. More transactions can be defined, to allow for

saving other types of logs, allowing for adaptability and easier maintenance.

1https://dre.pt/home/-/dre/114937034/details/maximized
2https://developer.mozilla.org/pt-PT/docs/Web/JavaScript
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Figure 3.2: JusticeChain’s UML class diagram

• Update Logger level : this transaction updates the level associated with a given Logger.

Only Admins can issue this transaction.

• Update Logger state: this transaction updates the state associated with a given Logger.

Only Admins can issue this transaction.

• Change permissions: this transaction updates an Auditor’s permissions to audit informa-

tion systems. Only Admins can issue this transaction.

The issuing of transactions can lead to chaincode execution which can produce Events.

Events are notifications emitted when a specific condition is met, which applications may listen

and react to. JusticeChain emits an event when: i) a new applicational log is recorded on the

ledger, ii) the state or level of a Logger is changed, and iii) an Auditor accesses applicational

logs. The types of events are:

• New log : this event is emitted when a Log is created.

• Logger level changed : Fabric emits this event when the level from a logger is changed.

• Logger state changed : Fabric emits this event when the state from a logger is changed.

3.5 Technologies

This section introduces the decisions about the tecnologies used to implement JusticeChain.

One should not discard alternatives to a blockchain, including but not limited to traditional and
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distributed database.

Traditional databases, like MySQL are, due to its nature, mutable when a predefined set of

users can insert or update data. Administrative roles can alter the contents of the stored informa-

tion, independently of their decentralisation. The traceability, verifiability, transparency, secu-

rity, privacy and notarization of transactions are normally more fragile in distributed databases

than of a permissioned, private blockchain [10].

A distributed database, such as Amazon DynamoDB supports multiple non-trusting writers

and are generally cheaper. Nonetheless, distributed databases cannot directly achieve the dis-

tribution of trust, i.e., blockchains provide improved transparency and auditability across the

involved parties. Furthermore, one may need transaction interaction and a set of rules to be run-

ning across nodes to implement the desired functionality, something that distributed databases

can not grant per se. Our use case presents three vicissitudes: (i) its participants have limited

trust in each other, but limited trust, (ii) the trust and responsibility of managing the logs

should belong to every organisation and (iii) IGFEJ should be able to administer the network.

In a multi-organization scenario, entities are not willing to delegate full control of applicational

logs, as they carry essential information, and its manipulations have consequences (such as hid-

ing actions). Consequently, each entity should be able to monitor, at least partially, the shared

applicational logs. These requirements match the characteristics of a blockchain. Regarding

the first and second characteristic, consensus mechanisms ensure that no single entity controls

the blockchain. Concerning the third characteristic, specific permissioned blockchains, such as

Hyperledger Fabric allow the delegation of a different level of control to specific participants.

These features make a blockchain solution suitable to address the given problem.

Given a system that can verify the log’s integrity, one can cross this information with other

information provided by IGFEJ, raising the probabilities of identification of the intruder, in case

of manipulation. Additionally, network nodes are distributed. If some of the nodes are offline,

when those nodes rejoin the network, they will automatically re-sync all the blocks. Let us

consider the trade-offs between a permissionless and a permissioned blockchain.

In permissionless blockchains, there are privacy concerns due to the information leakage

that can occur. More specifically, applicational logs contain sensitive information, such as user

behaviour, that should be protected (i.e., hidden) from not only the public but also from within

the system stakeholders. Even though it is possible to limit access to sensitive information, there

is the possibility of information leakage. This concern is enforced and gains a more significant

magnitude when taking into account the general data regulation protection. This system is used

mostly for providing an access control solution and leveraging efficient and trustable auditing. It
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only concerns the administration of the organisms that are responsible for such systems. Public

permissionless blockchains, such as Ethereum and Bitcoin, were built with a specific design

based on a cryptocurrency. Those blockchains are maintained by miners, which receive economic

incentives paid by peers who send transactions, at the expense of considerable computational

power.

Using such infrastructure would require IGFEJ to pay transaction fees, which is not adequate

for our scenario. Additionally, such infrastructures have limitations, including the sequential

execution of smart contracts (after consensus), non-differentiation between smart contract exe-

cution nodes and validator nodes, and hard-coded consensus protocols [52]. Public blockchains

are not suitable to address the proposed problem.

Taking into account the requirements listed on Section 3.1, a permissioned blockchain is

suitable to implement our solution. At a permissioned blockchain, the risk of any participant

intentionally introducing malicious code through a smart contract is lower than in permission-

less blockchains. First, the authentication component identifies all the participants. Second, the

blockchain records the transactions initiated by blockchain clients. Transactions follow an en-

dorsement policy that is established by the consortium for the network and relevant transaction

type. The blockchain records all transactions, even the invalid ones (those that are not added

to the ledger). This fact allows for the competent authorities to identify not only offenders, but

potential offenders, and in terms of the governance model, they can handle the incident.

To implement a blockchain solution with Hyperledger Fabric, one can use Hyperledger Com-

poser 3. Hyperledger Composer (or simply Composer) is an abstraction that aims to facilitate

the process of building blockchain applications and business networks. It has a set of tools and

scripts which simplify the creation of Hyperledger Fabric networks. The modelling language

allows the definition of super-types, leveraging inheritance’s properties.

Composer has a built-in modelling language, Hyperledger Composer Modeling Language,

defined by a namespace where all the necessary resource declarations take place. Composer can

generate a REST API server, enabling data integration capabilities automatically. It provides an

interface adaptable to the supported languages to interact with Hyperledger Fabric blockchain.

It generates a business network archive (BNA)4 for the network. Composer broadly covers these

components:

• Business Network Archive (BNA)

• Composer Playground

3https://hyperledger.github.io/composer/latest/
4https://hyperledger.github.io/composer/latest/introduction/introduction.html
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• Composer REST Server

Figure 3.3: Business Network Archive

Figure 3.3 represents the elements of a BNA. A BNA is a set of files containing the blockchain’s

logic, which can be deployed directly to Fabric. Several files compose it:

• Network Model : a definition of the entities that participate in the blockchain, including

participants, assets, concepts, transactions and events. Participants are the ecosystem’s

nodes, which submit transactions to the blockchain. Assets are entities to be protected

and managed by the blockchain. Concepts are abstract classes that are not assets, partic-

ipants or transactions. Transactions and events are defined by a transactionId or eventId,

respectively, and a timestamp.

• Business Logic: logic for the transaction functions (i.e., chaincode written in NodeJs).

Chaincode defines how participants interact with assets, using defined transactions.

• Access Control Logic (ACL): access control rules are defined using Hyperledger Composer

access control language. Rules define the rights of different participants in the network,

using CRUD access control (create, read, update or delete). The default user System has

permissions to perform all operations. Participants can access their permitted resources

and transactions. Access to a specific asset can be mediated through transactions. Each

rule is identified with a name and description. An action, which is restricted to a partic-

ipant, under certain conditions is then ALLOW, allowing the participant to perform the

specified operations or DENY, being the issuer blocked from operating a specific resource.
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It is possible to assure that the modifications made to an asset are made through a specific

transaction, allowing for fine-grain access control under certain conditions.

• Query File: Composer supports both named queries and dynamic queries. Named queries

are exposed through the GET methods from the generated REST server. Dynamic queries

can be built at runtime by the client.

Composer Playground is a web-based user interface used to model and test business networks,

which allows to visualize operations done on the Composer REST Server. Composer REST

Server generates a REST API server, based on the business network definition. This API can be

used by client applications and allows us to integrate non-blockchain applications in the network.

The REST API server can be used to connect the off-chain component to the blockchain.

The implementation of the blockchain system is encapsulated in the BNA, while the inte-

grations use the Composer REST server. Figure 3.4 represents a typical full-stack blockchain

solution. The idea is the business logic to be run by the blockchain, while REST APIs expose the

blockchain logic to front-end clients, which can be used by blockchain participants to interact

with it.

Figure 3.4: Typical Hyperledger Composer solution architecture

3.6 JusticeChain Architecture

In this section, the architecture of JusticeChain is introduced. The assets to be protected are

applicational logs generated by an information system related to the judicial system. The pro-

posed solution is scalable when it comes to supporting different organizations, different types of

logs and different auditors. This modular design allows the decomposition of the JusticeChain’s
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Figure 3.5: JusticeChain Architecture

architecture on what is the blockchain component architecture (ledger, permission management,

transaction validation and definition, data model) and blockchain client component architecture

(off-chain data, off-chain control, audit components) [56]. The architecture is represented in

Figure 3.5 using Archimate language [49].

The blockchain component stores applicational logs and enforces blockchain configurations

concerning the different participants on the network. The blockchain client component ensures

that participants can access the applicational logs via submitted transactions, and can audit

logs, under certain circumstances. A more detailed description of the blockchain component

architecture and blockchain client component architecture are available in Section 3.6.1 and in

Section 3.6.2, respectively.

3.6.1 Blockchain Components

In Fabric, there is the possibility to assign different trust levels to individual peers. Each role

has different permissions on the operations that can be applied by participants to the ledger.

Through the definition of endorsement policies, one can put more or less trust in a specific set of

endorser peers, making the trust system independent from the consensus algorithm to be used.

For implementing such a blockchain infrastructure, one needs different types of nodes: or-

derer peers (orderers), endorser peers, and committing peers (peers). Orderers from the ordering

service provide delivery guarantees of blocks composed of transactions while assuring atomic
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communication (consensus). Orderers are bootstrapped with a configuration file. Such config-

urations can be deployed by network administrators. Peer nodes can be endorser nodes, which

hosts and execute instances of the chaincode or committing peers, which host instances of the

ledger [3]. Endorser peers can be committing peers at the same time. Anchor peers make sure

peers in different organisations know about each other, being a vehicle for inter-organisation

communication, within the blockchain. For the sake of simplicity, we omit the presence of an-

chor peers, which are not essential to define for our use case. This research use case needs two

different chaincodes: chaincode that creates instances of applicational logs (S1 ) and chaincode

that accesses the ledger (S2 ), regains logs and retrieves them to the end-user. Endorsing peers

have S1 and S2 installed, while committing peers have S2 chaincode installed.

A custom certificate authority can be used to issue identities for each participant on the

network, like the Portuguese government certificate authority. Keys can then be distributed

using smart cards. Issued certificates are used by participants to sign transactions, assuring

non-repudiation of transactions. The Portuguese government can also use Fabric’s CA, the

built-in CA from Hyperledger Fabric, to issue CA certificates.

As there is limited trust between participants, and there is a responsible administrator, there

is no need for more than one orderer. Nonetheless, for assuring decentralisation, one can deploy

multiple orderers belonging to different organisations (having multiple orderers is unlikely to be

a performance bottleneck [3]).

Each organisation that participates in the network, and thus interested in auditing a specific

information system should maintain at least a peer node that holds an instance of the ledger

(committing peer). This allows one organisation to: i) assure log entries are not tampered,

and ii) retrieve and access log entries when authorised (e.g., audit). The member organisation

responsible for the information system that needs its log entries protected should have an en-

dorser peer. Endorser peers can creates logs, acting as Loggers. As applicational logs should

not be shared amongst different member organisations, one has to define access control rules

that manage that flow (e.g., only Admins and Auditors from PGR can see applicational logs

from Citius). If Auditors need specific permissions (or constraints), those can be tuned for each

Auditor by a Network Administrator, via a transaction.

Privacy concerns can arise when there are multiple information systems and multiple or-

ganisations involved. Each organisation should be only able to see a subset of the logs of the

information system that it is concerned with. For instance, we could define two consortia which

are stakeholders from Citius and SITAF, respectively: IGFEJ, IGSJ, COJ, PGR, CSM and

IGFEJ, IGSJ, COJ, PGR and CSTAF. In order to keep SITAF data private from CSM, and
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to keep Citius data private from CSTAF, one has some solutions such as i) create a channel

for each consortium ii) use Fabric’s feature, private data, and iii) tune access control rules via

Composer.

A different channel has a different shared ledger, therefore ensuring data privacy. However,

creating separate channels does not allow for all channels participants to see a transaction

while keeping part of the data private (fine-grain data privacy is difficult to achieve), and adds

performance overhead [48]. Private data can be used in this case, which allows a subset of

organisations the ability to endorse, commit, and query private data. The last option consists of

managing data access through chaincode through Composer’s access control rules, see Section

3.7.1). We chose the last option for its excellent performance and ease of implementation.

Figure 3.6 depicts the network participants for one possible consortium (IGFEJ, IGSJ, COJ,

PGR, and CSM), which forms a consortium (Portuguese Justice Consortium), the network con-

figurations applicable to the orderer (N), the communication channel (Logs’ channel) and the

certificate authority (IGFEJ-CA). Each colour indicates the organisation that owns that re-

source. Each organisation might have blockchain clients, which are connected to Fabric through

Composer and JusticeChain Client.

3.6.2 Blockchain Client Components

JusticeChain is a full-stack application that leverages Fabric to secure audit logs while providing

audit support. The Composer REST Server is used to interact with the underlying Fabric

blockchain; hence, it is a blockchain client component.

As presented in Figure 3.5, the blockchain client comprises two fundamental entities: the

Audit Manager and the Log Manager. These two components collaborate to serve as the

blockchain client, allowing two types of participants to access the blockchain for different pur-

poses. Both the Audit Manager and Log Manager expose application programming interfaces

(APIs), which allow the Audit Frontend and JusticeChain Oracle to access JusticeChain func-

tionalities. JusticeChain, on its turn, communicates with the blockchain via the Hyperledger

Composer API. Composer, on its turn, communicates with Hyperledger Fabric via Fabric’s API.

The JusticeChain blockchain client is composed by:

• JusticeChain Client: is a collaboration between two components - Log Manager and Audit

Manager. The JusticeChain Client communicates with the blockchain network via a set

of REST APIs provided by Hyperledger Composer.

• JusticeChain Oracle (Oracle): An oracle in the context of our problem is a component

that retrieves applicational logs from an outward log repository. The oracle can create
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Figure 3.6: JusticeChain Blockchain Architecture - Portuguese Justice Consortium. This consor-
tium is formed by 5 organizations (IGFEJ, IGSJ, COJ, PGR, and CSM), which hold 5 peers, 1
orderer (O), running network configurations NC, 1 certificate authority (IGFEJ-CA), operating
on channel Logs.
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a buffer of logs and send them to the Log Manager from time to time or send them in

real-time. The optimal scenario happens when logs are sent in real-time, as it diminishes

the load from the blockchain and information can be exposed to auditors in real-time.

• JusticeChain Log Manager (Log Manager): is connected to one or more oracles. When the

Log Manager receives a log, preprocessing is applied, as anonymisation or standardisation.

After that, the Log Manager submits a transaction to the blockchain, on the correspondent

Logger’s behalf.

• JusticeChain Audit Manager (Audit Manager): sends transactions to the blockchain on

behalf of the corresponding Auditor or Admin who needs to audit logs. The transactions

are, in fact, queries on the blockchain ledger, allowing the JusticeChain client to retrieve

the desired applicational logs. The Audit Manager is listening to events emitted by the

blockchain, which correspond to suspicious activity alerts.

• Audit Frontend: is a user interface that allows the stakeholders (Auditors or Network

Admins) to retrieve the applicational logs, via the Audit Log Manager. Allows obtaining

the logs in a certain time frame, allowing auditability.

• Log Repository: corresponds to the repository that stores logs (i.e. database).

• Hyperledger Composer (REST) Server: is generated from a business network archive

(see Section 3.7), and exposes an API that the JusticeChain client can use to access

the blockchain. Hyperledger Composer Server access Fabric using its API.

In addition to acting as a proxy between frontend applications and the blockchain, the

JusticeChain Client, allows end-user authentication to the blockchain network. A local database

stores local end user’s credentials. This way, one can map local authentication credentials and

the user’s cryptographic identity on the blockchain network, providing traceability. For instance,

an IGFEJ employee can use their government credentials to authenticate in JusticeChain, linking

his profile with the blockchain identity. We provide a user interface that handles authentication,

queries the blockchain and supports new user enrollment and registration.

3.7 JusticeChain Implementation

We use Hyperledger Composer to implement the blockchain components. The implementation

comprised the definition of the Business Network Archive, a file containing the data model,
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access control rules, transactions (chaincode) and queries associated with the blockchain. To

implement the blockchain client, we used Composer’s API5, NodeJS and Angular6.

3.7.1 Blockchain Components

The chaincode responsible for storing logs was implemented using NodeJS v8.9.0 and using the

Hyperledger Composer API version 0.20.8. The implemented data model follows the model

described in Section 3.4.

Composer uses Certificate Authorities (CA) that are used to generate the key pairs necessary

to enrol different participants on the network. The CA server configuration file contains a

Certificate Signing Request (CSR) section that can be configured. The CSR was customized to

generate X.509 certificates and keys for ECDSA signatures with curve prime256v1 and signature

algorithm ecdsa-with-SHA256.

We implemented the solution in a way that allows new participants to join the network,

as well as supporting different types of logs. Nodes have specific permissions concerning which

information can be seen and accessed (access control rules). The nodes from the administrating

organization have higher permissions on the system and may validate and execute smart con-

tracts and transactions, whereas other nodes can validate transactions and access the ledger.

These configurations allow for privacy and confidentiality of data by enforcing the specification

of rules for access control applied to each participant on the network.

3.7.2 Blockchain Client

The blockchain client comprises a client written in NodeJS, and a component generated by Hy-

perledger Composer: the Composer REST API. Composer REST API exposes JusticeChain’s

logic, namely from the Audit Manager and Log Manager. It communicates with the blockchain,

providing an entry point to access chaincode. Chaincode then, based on the invoker’s permis-

sions, accesses the distributed ledger and executes the desired actions: returns logs to the client

to be audited or inserts new log entries.

The Composer’s built-in user interfaces were used as the JusticeChain’s user interface, which

allows the visualization of the available routes on Composer REST API and the inspection of

Logs. In order to emulate the JusticeChain Oracle, we created a script to generate individual

log entries.

5https://hyperledger.github.io/composer/v0.19/api/api-doc-index
6https://angularjs.org/
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Chapter 4

Extending JusticeChain with

Blockchain Access Control

In Chapter 5, we evaluated JusticeChain against the proposed goals, concluding that such a

solution is suitable to improve the status quo at IGFEJ. JusticeChain presents an effective way

to protect justice data, where different entities and users can access it with different permission

levels. Nonetheless, there are some limitations: firstly, the possibility of centralisation, as the

network participants must trust the Loggers and the JusticeChain components (Log Manager,

Audit Manager). The existence of several Loggers controlled by different organisation alleviates

this problem. Secondly, there is a decoupling between the system’s logic and the log content,

as the programmers must specify which activities are recorded into a log. As a consequence,

relevant user behaviour can be lost, compromising audits.

The first limitation seems relatively straighforward to solve, as discussed in Section 5.2.4.

Regarding the second limitation, we can relate this limitation to access control. In fact, one can

see the blockchain access control problem as a generalisation of the log storing problem: logs

are the product of users’ access to system resources. If such access to all resources is mediated

through the blockchain, there is no need of safely securing logs: all access requests history will be

recorded in the shared ledger, when a transaction is initiated. This implies that peer nodes are

able to see who has accessed or tried to access a specific resource. A blockchain access control

system, therefore, constitutes a way to automatically log all user activity, creating secure data

that auditors can use. Furthermore, it allows distributing not only confidence towards the log

storage but also towards the authorisation process.

In multi-stakeholder scenarios, where the authentication and authorisation of end-users con-

cern several organisations, one needs a reliable mechanism to provide secure access control [50].

As an additional contribution that improves JusticeChain, we propose a secure, scalable
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Feature JusticeChain JusticeChain v2

Store applicational logs X X
Retrieve applicational logs X X
Manage the audit authorizations X X
Verify logs’ integrity X X
Verify auditors’ compliance X X
Log access requests to resources x X
Log changes to access control policies x X
Store access control policies x X
Evaluate access control policies x X

Table 4.1: JusticeChain and JusticeChain v2 features

blockchain access control solution, which includes the responsibility of protecting and managing

access to the logs. Such a system decentralizes trust at a larger scale. In particular, we pro-

pose JusticeChain v2, an ABAC system based on Hyperledger Fabric, based on previous work

[41, 31], which is extended to the domain of the Portuguese justice. Access control components

such as the Attribute Manager (AM), the Policy Decision Point (PDP), and the Policy Admin-

istration Point (PAP) are embedded in smart contracts, executed by Hyperledger Fabric. We

perform experiments on the access control application using Hyperledger Caliper, based on mul-

tiple configurations (including, but not limited to different world state databases and consensus

methods).

4.1 System Model

A centralised access control system suffers from some issues [41]: i) risk of privacy leakage, and

ii) risk of a single point of failure. A blockchain-based access control system could verify access

control requests in a decentralized way. Smart contracts allow to monitor and enforce complex

access control decisions.

The decentralised nature of the blockchain makes the technology suitable to address the

risks mentioned above. The fact that there is no single point of failure alleviates the risk of

privacy leakage. A shared ledger common to several parties eliminates centralization, increasing

dependability.

The use cases that JusticeChain v2 can address, and are applicable to IGFEJ are expressed

in Table 4.1.

This solution empowers both the owner and subjects, which is desirable in multi-stakeholder

scenarios, where the end-users are utilising a third-party information system. The subjects have

a mean for verifying which policy has been enforced when they performed an access request

which has been denied. In practice, there is no way to the resource owner to deny access to a
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resource by a rightful requester. On the other hand, the resource owner has a mean to leverage

audits, while being assured that no user had subverted the system.

The access control channel holds one the Portuguese Justice Consortium nodes (IGFEJ,

IGSJ, COJ, PGR, and CSM). These five nodes would be peer nodes, that commit transactions

and maintain the state of the ledger. IGFEJ, in particular is also an endorser, which can execute

smart policies (access control policies embbeded in smart contracts). Clients are the systems

that use this system, such as Citius. As IGFEJ adminstrates Citius, it should be the entity

which is responsible for access policies evaluation. For that, each PEP from the information

system to be integrated has to be refactored.

The workflow of users remain unaltered. The only difference is that the authorization re-

quests are now mediated through several nodes representing the Citius system, as the evaluation

of access control policies could be not trusted for the subject of the request who, instead, would

like to have unfair access to resources.

Each interested government entity is a node that contributes to the network, by validating

and auditing transactions. Other organisations’ nodes participate in the ecosystem as auditors

and validators. IGFEJ’s staff will not be able to subvert the system to hide their faults, assuring

the stakeholders non-repudiation and transparency. This way, IGFEJ provides guarantees that

they are not taking advantage of their privileged position. This solution makes difficult to

IGFEJ, judges, court officials, probation officers to abuse their privileges, as they cannot delete

their traces.

4.2 JusticeChain v2 Architecture

In this solution, the blockchain will act as a mediator between the entity requesting access to

a specific resource and the entity that manages that resource. The JSON markup language1, is

used to define attribute-based access control policies, based on the node-abac package 2, which

allows IGFEJ staff to define access control policies. Alternatively, a language based on XML3,

XACML4, can be used, and allows for fine-grain access control and scalability [29]. We may

have IGFEJ as the only PAP, as the creator and manager of access policies. It is possible to

decentralize the access control policies management process, by allowing more node to be a PAPs.

Even if IGFEJ is the only PAP, the transparency offered by this solution distributes the trust

and the responsibility about its access control policies. Figure 4.1 represents the architecture of

1https://www.json.org/
2https://www.npmjs.com/package/node-abac
3https://www.w3.org/XML/
4https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
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Figure 4.1: Blockchain-based access control architecture for IGFEJ

the proposed solution.

There are several options for the PIP to retrieve attributes. As mentioned on Section 3.1,

IGFEJ depends partially on third-party companies to serve its infrastructure (stores user in-

formation in an access directory, stored in a cloud), one question may arise: should matters of

national security be delivered to a third party with economic incentives? In case not, one option

is storing the AMs and user attributes on the blockchain. This may arise privacy concerns, which

we will later discuss. Each PIP attached to each SP would retrieve the necessary attributes from

a specific AM (containing information concerning each user or role on the blockchain [31]), and

pass them to the PDP. Although methods for revoking and upgrading such attributes can be

programmed, this might not be the most scalable solution, as more information will be on-chain.

As exposing users’ information is a problem within the network’s nodes, this approach is not

suitable, because AMs expose users’ information (i.e., username and password). Alternatively,

the PIP can access the AD. By making this differentiation, we decouple the responsibility of

evaluating a request with the responsibility of storing users’ attributes. In case attributes are

stored in the AD, the PIP needs to obtain that information via an oracle. Although we are rely-

ing on a centralized authority to keep and secure this repository, it is a more scalable solution, as

user management can be done off-chain and with the already implemented technologies. After

smart contracts evaluate SPs against their respective attributes, the PDP returns its decision
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to the PEP.

A critical architectural decision to make is which functionality is going to be implemented

on the blockchain and which is going to be implemented on application [56]. In a first approach,

only SPs will be on-chain. The JusticeChain client connects several off-chain components with

the blockchain. This solution not only logs all accesses in a secure way but also provides a

framework to control all access controls in respect to the participants in the network. Nodes

from the private network can access the blockchain and check the transactions history, enabling

auditability. Automatic auditing techniques can be developed. A fine-grain solution is obtained,

enforcing right access validation on service providers.

4.3 Implementation

For implementation purposes, we utilized Hyperledger Fabric. We developed three smart con-

tracts in javascript that implement the access control system, namely:

• Chaincode Record : stores access control policies, subjects, or resources.

• Chaincode Update: updates access control policies, subjects, or resources.

• Chaincode Query : queries subject or resource attributes based on their keys.

• Chaincode PDP : evalautes an access control request.

The chaincode record receives as arguments a subjectkey and a subject. A subject is a JSON

object containing specific properties, while the subjectkey is a unique identifier for the subject.

The chaincode first checks if the subjectkey already exists in the world state. If so, it throws an

error. Otherwise, the world state stores the subjectkey. Storing access control policies, subjects,

or resources is similar: the difference lies in the input arguments. For recording an access

control policy, the chaincode receives an access control policy. The update chaincode updates

an access control policy, subject, or resource. It receives as an input a subjectkey and a subject.

It then updates the subjectkey with the content of the subject. Regarding the update chaincode,

updating access control policies, subjects, or resources is similar.

The query chaincode receives a key and returns the corresponding object. The PDP chain-

code evaluates an access control request, returning TRUE (when the access is granted) or FALSE

(when the access is denied). This chaincode receives a subject key, resource key, a rule and a

policy key. The keys allow the system to retrieve the corresponding objects, while the rule

specifies an entry on the access control policy. It retrieves the subject, resource and policy from
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the world state, and parses it into JSON objects. Nextly, an abac node5 is built from the parsed

policy. Finally, we evaluate the decision taking into account the subject, resource, and rule

picked from the policy.

5Used package: https://www.npmjs.com/package/node-abac
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Chapter 5

Evaluation

In this chapter, we evaluate JusticeChain and JusticeChain v2. We describe the environment

used to evaluate the system, the used metrics and the evaluation methodology. Then, an ap-

proach to perform the system evaluation is presented, accompanied by the definition of metrics

and goal targets. Later, the information provided by the evaluation is collected, analysed and

discussed. Finally, we provide a discussion about the systems limitations and possible approaches

to address them.

5.1 Evaluation Methodology

In this section, we will measure the performance of JusticeChain and JusticeChain v2. Defini-

tions of terms used in this section are specified in Section 2.1.4.

We focus the evaluation on the costs of protecting applicational logs, as it is JusticeChain’s

main feature. The performance of actions such as changing a Logger level or editing the prop-

erties of a Logger is not going to be addressed, as such operations represent one lightweight

standard transaction. Furthermore, in production the large majority of transactions aims to

create applicational logs.

With the performed experiments, we tackle the following three questions: i) What is the

maximum throughput JusticeChain can achieve, i.e. how many logs per second can it record per

time unit? ii) what is the latency at the maximum throughput, i.e., what is the time window

needed for logs to be secured?, and iii) what is the cost, in terms of storage, of protecting

applicational logs, i.e., what is the scalability of JusticeChain? Answers to such questions allow

us to conclude the suitability of JusticeChain about the proposed use case.
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5.1.1 Load generating client

We study performance metrics as transaction success rate, transaction throughput, read through-

put, transaction latency, read latency and resource consumption, as advised by the Hyperledger

community 1. The read latency corresponds to the difference between the read request and the

received reply, whereas the read throughput is the ratio between the total read operations and

the total time in seconds. The transaction Latency corresponds to the difference between the

submit time and the transaction confirmation time. It is the time taken for the transaction

to affect the network. The transaction throughput isthe ratio between the total committed

transactions and the total time in seconds.

For that, we leveraged Hyperledger Caliper 2, a project baked by Hyperledger, which aims

to facilitate the evaluation of blockchain solutions. The Caliper framework serves as a load

generating client, and runs tests based on configuration files, which are used to create a Fabric

blockchain topology, as needed, and run a series of tests.

Benchmark layer

JusticeChain tests (js)

Benchmark Engine

Interface & core layer

Report
generator Blockchain

North Bound
Interfaces

Resource
monitor

Configuration
file (.yaml)

Adaptation layer

Fabric
adaptor

Fabric

Figure 5.1: Testing JusticeChain with Hyperledger Caliper

Hyperledger Caliper has several layers, the Adaptation Layer, the Interface & Core Layer and

the Benchmark Layer, as can be seen in Figure 5.1. The adaptation layer provides integration

with different blockchain infrastructures (i.e., Fabric). The next layer provides an abstraction of

1https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
2Caliper Docs - https : //hyperledger.github.io/caliper/docs/2Architecture.html
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a given blockchain infrastructure, via a set of northbound interfaces (NBIs). There are several

NBIs, which allow to deploy smart contracts on backend blockchain, query the ledger, monitor

the resources being used on the benchmarking process, to analyse statistics and to generate

a report. The report generator and resource monitor can be tuned, through a definition file.

The applicational layer contains tests implemented for the JusticeChain and JusticeChain v2

scenarios (written in javascript).

Caliper uses a benchmarking engine to assess the performance of a blockchain solution.

The benchmarking engine initialises the blockchain and starts running the tests, according to a

workload specified on a Yet Another Markup Language (YAML) file. For each test, a context is

created, and transactions are generated and submitted. With Caliper, it is possible to modify

the rate and the mechanism at which transactions are submitted. Such tuning is made through

rate controllers, in order to control the transaction flow of the system. For instance, the fixed

feedback rate controller sends input transactions at a fixed interval. It is possible to specify a

threshold, in which the system stops sending transactions momentarily (number of unfinished

transactions). The Fixed Backlog rate controller drives the tests at a target loading, which

corresponds to a defined backlog of transactions. The controller aims for the maximum possible

transactions per second of a system under test while maintaining the backlog level. After each

test is run, the context is released, and statistics are collected. Finally, after all, tests are run,

a report is generated.

Regarding the load testing, Caliper features’ allow us to simulate the behaviour of the Log

Manager (tunning the number of Loggers, and the number of transactions issued per second).

Citius’ behaviour is implicit in the number of transactions that the Log Manager issues to the

blockchain component, as every log entry generated by Citius goes to the Log Manager.

5.2 JusticeChain Evaluation

5.2.1 Setup and Test Environment

A replication of the real production environment was set up, with several distributed clients,

emulated by Caliper’s client number option. In our context, a client is a Logger. A machine

was deployed in Google Compute Engine (GCE). At GCE, an instance was set up on London,

England, UK, with 16vCPU and 60GB of memory, and a 50GB SSD disk.

Tests were performed on top of Docker containers running over Docker version 18.09.6. Each

peer, certified authority node and orderer was running on the base image of Hyperledger Fabric.

As a state database, instances of Hyperledger Fabric LevelDB images were used.
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Regarding the test environment, a simplified Fabric v1.2.0 network with a solo channel com-

prising two organisations (Org1, Org2) with one peer each and one CA each was considered (See

Figure 3.6 from Section 3.6.1). The consensus algorithm is solo orderer (broadcasts the trans-

action without establishing any real consensus, used for testing purposes). In this evaluation,

the used maximum block size was 128MB, the default batch timeout 250ms and the number of

transactions per block is 10. We considered a variable number of blockchain clients, as we want

to see how JusticeChain reacts to transaction injetion from different nodes.

5.2.2 Throughput and Latency

Understanding JusticeChain’s scalability in terms of the transaction throughput, i.e., how many

transactions per second can the system handle, and how quickly they are incorporated into the

distributed ledger (transaction latency) is essential to justify the suitability of the system with

accordance to the Portuguese Justice’s requirements.

On an information system with 10,000 users, if each one is performing 100 operations per day

that generate a log entry, we obtain an average of approximately 12 tps. As most transactions

will be issued during the peak hours, the system should be able to support at least a throughput

of 12 transactions per second. Assuming every user creates 75% of the transaction workload

during 9 a.m. and 6 p.m., the minimum admissible tps rate is around 20 tps. The target goal for

throughput is, therefore, 20 tps. Considering latency, and in order to reduce the time window

an attacker can act, we consider a maximum of 60 seconds as the target goal.

In the following tests, we issue 20 tps, the minimum admissible tps rate, at a constant rate.

100, 500, 2,500 and 5,000 transactions were issued, respectively. Furthermore, we varied the

number of blockchain clients (in this case, Loggers). The number of Loggers was 1,3,5 and 10.
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Figure 5.2: Variation of the throughput with the number of clients, at a 20 tps rate

Figure 5.2 shows the variation of the throughput with the number of clients, at a 20 tps

rate. One can observe that the throughput decreases with ten clients, for a small number of

transactions. This situation happens due to the transaction distribution in Caliper, as it takes

considerable time to distribute them versus the time it takes to execute them.
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Figure 5.3: Variation of the average latency with the number of transactions, at a 20 tps rate

Figure 5.3 shows the variation of the average latency with the number of transactions, at a

20 tps rate. Usually, lower latency is related with a smaller number of blockchain clients, as the

peers that execute transactions only need to return messages to a smaller number of clients. In
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general, the more clients, the higher the latency.

The results from Figures 5.2 and 5.3 do not provide conclusive information. The system

behaves similarly, concerning a variable number of transactions and clients, when the transaction

rate is 20, as such rate does not stress the system.

The rate at which transactions are submitted to the network influence its performance

(throughput, latency). To understand JusticeChain’s throughput capabilities, we issued 2500

transactions, are a variable tps rate, stipulated by the Fixed backlog rate controller.
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Figure 5.4: Variation of the throughput with the size of the backlog

Figure 5.4 shows the variation of the throughput with the size of the backlog. We can observe

that the highest possible throughput is when we have a backlog of 600 pending transactions and

ten clients that are sending those transactions. When using 3, 5 and 10 clients, the throughput

starts to decrease when the backlog increases, at 200,300 and 600 transactions, respectively.

Figure 5.5 represents the variation of the latency with the size of the backlog, respectively.
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Figure 5.5: Variation of the latency with the size of the backlog

By crossing Figures 5.4 and 5.5, one can extract a relation between throughput and la-

tency. In general, all tests have throughput and latency increased, except the one with three

clients when the throughput dropped greatly, the latency as well, as there were a successful few

transactions to be distributed.

The ideal client number is 1 for a backlog of 100 transactions if we take into account the

throughput/latency ration. We achieve a throughput of around 31.2 tps, with a latency of 16.37

seconds. The maximum throughput we obtain is around 37 tps, at the expense of latency,

48.39 seconds. The test that yields the maximum throughput is in Table 5.1. To obtain such

throughput, one needs ten clients. Table 5.1 holds the results of the best performing maximum

tps test, including the success rate, send rate, latency and throughput.

Table 5.1: Maximum tps test

Succ Fail Send Rate Max Latency Min Latency Avg Latency Throughput

2500 0 47.6 tps 61.37 s 1.67 s 48.39 s 36.9 tps

5.2.3 Storage

Storage evaluation aims to predict how much storage the Portuguese Justice needs for a long-

term solution. We present an experimental evaluation.

The transactions that were used on the evaluation were the creation of an applicational log,

CreateCitiusLog. Different types of CitiusLogs (namely with 10, 20 and 30 attributes) were

tested to infer the impact of different log sizes. The CitiusLog with ten attributes corresponds
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Table 5.2: Citius Test 1: 100 issued transactions against 1 blockchain client, at a 20 tps rate

TYPE NAME Memory(avg) CPU(avg) Traffic In Traffic Out Disc Read Disc Write

Process node local-client.js(avg) - - - - - -

Docker dev-peer0.org1.example.com 106.0MB 60.44% 640.0KB 563.4KBMB 0B 0B

Docker dev-peer0.org2.example.com 133.4MB 57.61% 622.66KB 550.3KB 0B 0B

Docker peer0.org1.example.com 270.2MB 17.25% 1.5MB 4.7MB 0B 1.4MB

Docker peer0.org2.example.com 244.5MB 16.23% 1.5MB 4.7MB 0B 1.4MB

Docker ca.org1.example.com 24.6MB 0.00% 42B 42B 0B 0B

Docker ca.org2.example.com 9MB 0.00% 0B 0B 0B 0B

Docker orderer.example.com 35.0MB 6.24% 838.0KB 1.5MB 28.0KB 880.0KB
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Figure 5.6: Disk Storage required in function of the number of transactions

to a simplified version of the original CitiusLog, which has 20 attributes. A CitiusLog with 30

attributes corresponds to a possible extension of the applicational log.

We executed chaincode that generates applicational log entries on the Logger peer. Caliper

calls this chaincode a certain number of times, allowing to assess the blockchain performance

of saving log entries. The time taking from the Log generation to Log store on the blockchain

is neglected, i.e., the time between the Log generation on an external information system, its

retrieval by the JusticeChain Oracle, the reception from JusticeChain Log Manager and the

reception from the blockchain is not considered.

From the experience described on 5.2.2, we obtained similar results to the ones present on

Table 5.2. From these, we plotted Figures 5.6 and 5.7.

The peers peer0.org1.example.com and peer0.org2.example.com maintain the global ledger,

and have the same Disc Write, as both peers commit the same transactions. The Memory

(Avg), CPU usage and Traffic will not be analysed, as they do not comprise consequences to

this particular study.
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Figure 5.7: Disk Storage required in function of the type of Log

Next, we evaluated the impact of different types of Citius Logs, with 10, 20 and 30 attributes,

called CitiusLog10, CitiusLog20 and CitiusLog30, respectively.

Performing a linear regression over CitiusLog20 and CitiusLog10 allow us to predict how

much storage is necessary for one year of transactions.

We neglect the constants from the linear regression, as those are irrelevant when studying

the system behaviour on 5,000 transactions or more. Assuming that all 10,000 users perform

100 operations that generate a transaction per day (tpd = 1,000,000), the total storage required

for a year, for each peer node holding CitiusLog10 is given by:

SCitius10 = 1.63.10−2.tpd.365 (5.1)

For CitiusLog20, the total storage is:

SCitius20 = 1.81.10−2.tpd.365 (5.2)

For CitiusLog30, the total storage is:

SCitius20 = 2.02.10−2.tpd.365 (5.3)

With tpd = 1, 000, 000, and from Equations 5.1 and 5.3, SCitius10 and SCitius30 yield, respec-

tively, 5.67TB and 7.02TB.

Considering the Amazon Web Services (AWS), namely AWS S3 storage solution, the price
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Figure 5.8: Linear regressions of CitiusLog10, CitiusLog20 and CitiusLog30

# Peers Storage (TB) AWS S3 Standard ($) Price AWS Glacier ($) Google Cloud Storage ($) Azure Standard GPv2 - Archive ($)

2 140 294 54 372.7 13.9

3 210 441 84 545.8 20.8

4 280 588 112 566.2 27.7

5 350 735 140 716.8 34.7

Table 5.3: Peer cost on different cloud providers

for five different organizations with one peer each one to store one year of CitiusLog30 would be

approximately 35TB, or $735. If we consider cheaper options, such as AWS Glacier, the cost

is $140 per year, which makes this solution economically viable. Table 5.3 shows the relation

between the number of peers, the storage required and its price on different cloud providers.

5.2.4 Discussion

In conclusion, JusticeChain can achieve an optimal throughput of around 37 tps, at the expense

of latency, being the average 48.39s. In a practical scenario, with only one blockchain client,

JusticeChain achieves 25 tps, but there is a better trade-off throughput-latency, being the average

latency 16.37s. It is worth to note that there is a trade-off between throughput and latency. The

higher the throughput, the higher the latency, as more transactions take longer to be committed

to the ledger.

Regarding storage, we could observe in Figure 5.6 that the number of blockchain clients (Log-

gers) issuing transactions does not have an impact on disk storage. The number of blockchain

clients issuing transactions does not affect the amount of information that has to be written at a

peer’s disk. Nonetheless, it affects the traffic that goes out of peers, as they need to communicate

the transaction’s endorsement/committing to more clients. Figure 5.7 shows that for up to 5,000
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transactions there is not a substantial difference between saving CitiusLog10, CitiusLog20 and

CitiusLog30. Despite not being relevant initially, in the long term, as can be concluded from the

linear regressions in Figure 5.8, the difference is significant. Table 5.3 shows the storage costs

from several cloud providers. Although costs are one of the most important factors to consider,

other features such as replication and instant data retrieval should be taken into account when

choosing a cloud provider. A trade-off between security requirements, distribution of responsi-

bilities and monetary cost must be done at IGFEJ, to evaluate how many peers are worth to

deploy.

The storage evaluation did not take into account the information stored by the orderer. The

orderer saves transaction information (e.g., transaction history, transaction proposals). For a

more accurate evaluation, the storage required by the orderer should be taken into account. Our

results yield, therefore, an optimistic evaluation concerning storage.

We conclude that the number of attributes has practical implications for the long run of

the system. Consequently, the final Log model should only contain the essential attributes. A

blockchain solution with more nodes increases the resilience of the system in terms of integrity

and availability. Despite having benefits, those are at the expense of performance and storage.

In particular, the storage required scales linearly with the number of nodes, scaling to dozens

or hundreds of TB per year.

JusticeChain has some limitations. Each peer of the blockchain is required to have its

copy of the ledger. This fact leads to an increased storage footprint, as more logs are added

through JusticeChain Log Manager. The size footprint also increases the search complexity for

verification, in cases the blockchain transaction history has to be verified. In JusticeChain, its

space complexity is similar to most permissioned blockchain systems, O(n).

Concerning the time complexity, it depends on the used consensus algorithm. If using a

PBFT consensus, in a network with n replicas, the number of messages exchanged are n2 - n.

For each transaction generated within the system, the overall time complexity is O(n2). This

fact can lead to performance problems when replicas are several dozens.

Although Fabric is not theoretically tamper-proof, the existence of a consortium and a strict

endorsement policy can significantly reduce the risk of collusion: as more endorsement peers

belonging to different organizations are required to endorse a transaction, the more organiza-

tions have to collude to change the world state [3]. The endorsement policy to follow can be

AND(Org1,Org2, ... , Orgn). If there is the need of a trade-off between performance and security,

the endorsement policy can be changed to, for example OR(Org1,Org2, ... , Orgn) [52].

The throughput limitations, concerning Fabric’s maximum theoretical throughput, are due
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to the several layers that form JusticeChain. The transaction is first generated at Citius, sent

to the Log Manager, and from there a blockchain transaction is created and sent to Composer.

Composer then transforms the transaction into a Fabric transaction. Composer might be a

considerable bottleneck.

Figure 5.9: JusticeChain layers [32]

Besides removing Composer, other improvements can be done to JusticeChain, such as tuning

Fabric configurations. In particular, recommendations from Thakkar et al. [48] to tune the block

size, endorsement policy, channels, resource allocation, and state database can be followed. In

order to maximize throughput, the batch timeout can be raised (from 250ms to 1s), as well as

the maximum number of transactions in a block (from 10 to 100), while the maximum block

size can remain at 128 MB.

Lastly, one can see a possible limitation of the proposed solution concerning trust distri-

bution. The limitations tackle the following questions: i) What if there is only one Logger

available? ii) What if there is only one oracle that retrieves logs from Citius, controlled by

on organisation?, and iii) What if there is only one JusticeChain client, administered by one

organisation? JusticeChain appears to have the risk of centralisation, which can, ultimately,

defeat the whole purpose of a blockchain solution. Nonetheless, some relievers can be applied

in order to assure decentralisation. Regarding the first two questions, one could deploy multiple

oracles and Loggers, each pair corresponding to a different organisation. Each Logger would

send a unique log entry, with the same ID. Chaincode can be developed to compare the same

log entries created by different Loggers. Such chaincode would agree on the log entry to be

stored (following a consensus mechanism, for instance, the majority). Regarding question three,

administrators can deploy multiple JusticeChain clients, diminishing the risks associated with

centralisation.
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5.3 JusticeChain v2 Evaluation

In this section, we evaluate the extension of JusticeChain, JusticeChain v2, using the same

evaluation methodology from Section 5.1. For evaluation purposes, we take as performance

metrics the throughput and latency, as those are vital metrics concerning an access control

system. After that, we provide a theoretical evaluation of the storage required to save access

control policies, subjects, and resources.

We defined a set 〈o, s, p〉, in which subject s is authorised to execute privilege p on object

o, and operated over them. In order to understand the behaviour of our system, we varied

the following parameters: number of transactions, number of peers, send rate, and type of

database. We varied the available consensus mechanisms, Kafka [26] and Raft [36]. Kafka

is a messaging based log aggregator and distributor, in which producers publish messages to

message streams. Messages are stored in brokers, where consumers pull the requested data.

Kafka includes a consensus mechanism implemented through Zookeeper, a hierarchical key-

value store called ZAB. Raft is a distributed consensus algorithm, in which a leader on a cluster

of machines is elected and starts the consensus process.

Finally, we provide a discussion about the limitations of JusticeChain v2 and possible ap-

proaches to address them.

5.3.1 Setup and Test Environment

A replication of the real production environment was set up, with several distributed clients,

emulated by Caliper’s client number option. A machine was deployed in Google Compute Engine

(GCE). At GCE, an instance was set up on London, England, UK, with 8vCPU and 8GB of

memory.

The consensus algorithm is solo orderer (broadcasts the transaction without establishing any

real consensus, used for evaluation purposes). In this evaluation, the used block size and batch

timeout were the default values.

5.3.2 Throughput and Latency

From Section 5.2.2, we inferred the minimum admissible tps rate, that tackles the average

operations per second at Citius. Therefore, the proposed access control system should be able

to handle at least 20 access control requests per second. Low latency is highly desired, as access

control requests should be dispatched as soon as possible. We set a goal of 15 seconds, as the

average latency.
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Figure 5.10 shows the variation of the throughput concerning the send rate, both measures

in transactions per second. By analysing the graph, we can conclude that the Raft consensus

mechanism achieves a higher throughput (around 252) than with Kafka (around 230).

Figure 5.10: Throughput in function of the send rate

As higher throughput usually comes with higher latency, we analysed the impact on the

consensus mechanism on the latency. Figure 5.11 depicts the latency in function of the send

rate. One can observe that Raft achieves a lower latency (11.69s) than Kafka (13.97s).

We measure the Average latency for the available different chaincodes (Query, Record, and

PDP). Figures 5.12 and 5.13 illustrates the comparison.

Finally, we compare the impact of different databases that hold the world state, as well as

a different number of peers on the network. Figure 5.14 shows the benchmark between using

LevelDB3, CouchDB4, and using two organisations with one peer each and three organisations

with two peers each.

5.3.3 Storage

For the evaluation of the storage required to store access control policies, subjects and resources,

we assume that the storage occupied by each is 1165, 225 and 37 characters, respectively. As-

suming each character occupies 1 byte, one can conclude that:

3https://github.com/google/leveldb
4https://couchdb.apache.org/
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Figure 5.11: Latency in function of the send rate

Figure 5.12: Average latency using Kafka, depending on the number of issued transactions
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Figure 5.13: Average latency using Raft, depending on the number of issued transactions

Figure 5.14: Average latency, in fuction of the world state database, number of organisation and
number of peers
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• Simple access control policies occupate around 1KB.

• User representations occupate 225 bytes.

• Resources occupate around 100 bytes.

The number of KB required for each access control policy to be stored is given by the

following equation:

AccessControlPolicybytes = 1×Npolicies (5.4)

Npolicies is the number of access control policies that the system has. Assuming Npolicies =

1000, our system needs approximately 1MB to store all policies, per peer node. Assuming 1KB

user representations, and taking into account that Citius holds approximately 10,000 users, the

storage for users, for each peer is around 10MB. Finally, assuming each resource is defined by a

pointer to its original location, each resource demands very little storage. Assuming one million

resources, the storage yielded is around 100 MB.

The total storage occupied by definitions of access control policies, subjects and resources is

approximately 111 MB, per peer node.

5.3.4 Discussion

There are important considerations to do with regard to JusticeChain v2. One can observe that

generally, the PDP chaincode takes the longest to execute, being it more notorious for a high

number of transactions (above 5,000). This result is expected, as the PDP has to retrive the

subject, and access control components to evaluate the request. The query chaincode is usually

the quickest to execute.

We can conclude that using CouchDB dramatically increases the average latency, in compar-

ison with LevelDB. Furthermore, introducing a new organisation increases the average latency

from 5 to 130 times. Including more than 2 organisations in the process of evaluation access

control policies might be a bottleneck for the system.

JusticeChain v2 evaluation has some limitations. First, the evaluation was made taken into

account a simple, general case. In order to obtain reliable results, one should be able to access

IGFEJ’s access control policies, definitions of subjects and rules, which we cannot, for privacy

reasons. As access control policies are most likely more complex than the ones we defined the

execution time taken for validating an access request to an object might be higher in a real

world scenario. Concerning storage, access control policies can be occupying more storage.

This blockchain-based access control mechanism is more expensive than conventional ones.

As it is not centralized, it has a higher latency and lower throughput. Nonetheless, this is a

81



reasonable trade-off, as our method provides trust distribution and decentralized access control

decisions.

The usage of a blockchain-based access control system required information systems to change

their PEPs. Developers have, therefore, to make the PEP a client of the blockchain, which allows

the blockchain to mediate the access controlflow. Besides building the new PEP, adminstrators

have to record the access control policies, subjects and resources in the JSON format, and load

them into the blockchain.

Finally, some privacy concerns may arise between participants. Should different organisations

have access to each others’ access control policies? In case that such consortium needs privacy,

the private data feature from Fabric can be used. Alternatively, one can use zero-knowledge

proof (ZKP) technologies in Hyperledger Fabric. ZKPs accommodate privacy-preserving asset

management, with audit support.

5.4 JusticeChain vs JusticeChain v2

This section summarizes how JusticeChain and JusticeChain v2 work, and their main contribu-

tions to the justice ecosystem.

In JusticeChain, end-users (as judges and court clerk) utilize the information system from

justice that manages court processes (i.e., Citius). When users provide a request through the

PEP, it redirects the request to the local, centralized access control system, based on RBAC. The

local PDP then enforces access control requests from users and may record actions performed

by users on objects. Some actions from the users are stored (i.e., via a log entry), in particular,

the ones explicitly defined by programmers, in a database. Such database fires trigger when a

log is stored, and the information is redirected to the JusticeChain Client (Log Manager), by

the oracle. Logs are parsed and processed, if needed, and sent to the blockchain on behalf of

the information system that originated them.

The blockchain provides data integrity. Moreover, the blockchain provides accountability in

two ways: i) towards end-users, as the files containing their actions are immutable and non-

deletable, and ii) concerning who access log entries. Figure 5.15 represents JusticeChain.

Retrieving Table 2.2, one can verify that JusticeChain aims to all the desired characteris-

tics we analysed regarding audit logs: integrity checking, integrity assurance, a decentralized

solution, which keeps data private, and provides different right access to data.

In JusticeChain v2, the access control system is decentralized. For this, each PEP of the

information system participating in the network serves as a blockchain client. Instead of autho-

rizing access control requests locally, recurring to hardcoded rules and user attributes from a
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centralized database, the PEP sends the request to the blockchain, which acts as PIP and PDP,

decentralizing the flow. The blockchain processes the request based on smart policies, stored on

the blockchain and from information retrieved by the PIPs. Smart policies can be created and

updated at the PAP, by network administrators. The PDP enforces the decision and implicitly

saves the user action by recording the transaction corresponding to an access control request on

the blockchain.

JusticeChain v2 provides the same advantages as JusticeChain (data integrity, accountability

towards users and accountability towards auditors) and more: it allows a fine-grain authorization

control, leading to authorization decentralization. This contribute allows a more enhanced trust

distribution to stakeholders, as they can check if i) their access is not being revoked unduly, and

ii) only users with the right permissions can access restricted resources. Figure 5.16 represents

JusticeChain v2.

Retrieving Table 2.3, one can verify that JusticeChain v2 aims to all the desired character-

istics we analysed regarding blockchain access control.
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Chapter 6

Conclusions

This dissertation presented JusticeChain, a blockchain-based system which increases trust in

information systems managed by third-parties, regarding saving and accessing audit data. Jus-

ticeChain increases the resilience of applicational logs at justice, by assuring integrity, redun-

dancy, and transparency of applicational logs, increasing their resiliency. JusticeChain improves

traditional logging systems by distributing logs through the blockchain technology, where stake-

holders depend on a centralised information system to conduct their activities, which cause trust

issues. The experimental evaluation results show that JusticeChain can save 25 log entries per

second, with a latency of 16 seconds, with a solo Logger. This option is cheaper in terms of

storage, compared to the 10 Loggers alternative, that is capable of storing 37 applicational log

entries per second, with a latency of under 1 minute. The evaluation showed that the stor-

age required for each peer node is in the order of terabytes per year. Using JusticeChain to

manage, inspect and analyse logs brings decentralisation and trust, at the expense of storage

and performance overheads compared to traditional systems. Performance can be enhanced by

tuning network parameters and utilising Fabric APIs instead of Composer’s API. As a way to

distribute trust on a larger scale, we propose JusticeChain v2. We proposed a blockchain-based

access control system which has the potential to solve the trust and interoperability problems

regarding the authorisation process. JusticeChain v2 yields the advantages that JusticeChain

does (as the guarantee log integrity and audits mediated by the blockchain). Our evaluation

shows that our system can achieve a throughput of around 250 transactions per second, with a

latency of around 12 seconds, using the Raft consensus mechanism. This performance is suit-

able for systems administrated by IGFEJ, such as Citius. Our contributions can foster digital

transformation at public administration, providing a framework to distribute trust and promote

synergies.
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6.1 Achievements

This work yields several contributions to IGFEJ, the scientific community, and the open-source

community. We idealised and developed JusticeChain, a blockchain-based system that mediates

audits and increases the resiliency of log entries, directed to the reality of IGFEJ. Furthermore,

we proposed a blockchain-based access control system at IGFEJ, which extends JusticeChain.

Three papers were produced along with the writing of this dissertation, which shows scientific

validation and interest for the work developed. First, R. Belchior, M. Correia & A. Vasconcelos

(2019). JusticeChain: Using Blockchain to Protect Justice Logs, CoopIS 2019: 27th International

Conference on Cooperative Information Systems, Rhodes, Greece, Oct 21-25. Berlin, Germany:

Springer Verlag, which presents JusticeChain. Second, R. Belchior, M. Correia & A. Vasconcelos

(2019). Second, Towards Secure, Distributed, and Automatic Audits with Blockchain, submit-

ted to the European Conference on Information Systems, which presents details about how the

blockchain technology can be used to enhance audit techniques. In the context of JusticeChain

v2, the author proposed a project to the Hyperledger Foundation1, called Hyperledger Fabric

Based Access Control2. The project is backed by the Linux Foundation3 and it is being im-

plemented as an official Hyperledger Lab Project4. This project aims to create a general case

blockchain-based access control system using Hyperledger Fabric. The results of this project will

be disseminated to the scientific community through the following publication: S. Rouhani, R.

Belchior, R. Cruz & R. Deters (2019). Hyperledger Based Access Control, Submitted to IEEE

Access.

6.2 Future Work

This work paves the way to appealing future works, as the blockchain can be explored to further

enhance synergies not only in the public administration sectors but also a variety of them in

which there is a lack of trust. Organisations are testing the potential of blockchain technology in

areas such as data management, data privacy and access control [10, 30], bringing implications

to record-keeping and the business processes associated with it, namely audits. Permissioned,

private blockchain frameworks could contribute to the processes behind audits by i) alleviat-

ing auditor’s work, ii) hindering fraud and collusion between organisations and auditors, iii)

promote synergies between organisations and their stakeholders, and iv) protecting access to

sensitive information. In particular, the combination of artificial intelligence techniques with

1https://www.hyperledger.org/
2https://wiki.hyperledger.org/display/INTERN/Hyperledger+Fabric+Based+Access+Control
3https://www.linuxfoundation.org/
4https://github.com/hyperledger-labs/hyperledger-fabric-based-access-control
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the decentralised enforces execution that smart contracts provide the necessary infrastructure

to semi-automatic or even automatic audits. Therefore, we aim to provide pointers to the util-

isation of blockchain technology as an enhancer of secure, distributed, and more automatized

audits.

Furthermore, this work can be extended to domains different than justice. Public admin-

istration in Portugal have processes in which there are stakeholders with different incentives,

using third-party information systems, like the ones managing registo predial, or custas judici-

ais or even electronic voting. Any industry which has trust issues between stakeholders, and

should benefit from a decentralised access mechanism to data (for provenance, transparency and

traceability) can benefit from JusticeChain. From this reasoning, it follows that JusticeChain

may be applied to fundamentally different areas than justice, such as healthcare, banking, smart

cities, electronic identity, education, insurance, wills and inheritances, and loyalty programs. As

a mean to overcome JusticeChain’s limitations, different blockchains can be taken into account.

Multichain 2.0 5, provides a smart contract functionality and its optimised for read operations,

which can provide an enhanced system for automatic audits. A combination of Hyperledger

Fabric with Multichain could be interesting to explore. To do so, we can consider the Cosmos

blockchain 6. Cosmos is based on Tendermint 7, and aims to solve scalability and interoperability

problems, by aggregating several different blockchains. The theoretical maximum throughput

of Tendermint is around 14,000 transactions per second, which would leverage JusticeChain to

secure records from more demanding systems and, on the other hand, providing a more robust

system to auditors and automatized audits.

Concerning JusticeChain v2, we could extend the blockchain-based access control system to

handle authentication, as well. By exploring an end-to-end blockchain-based AAA system, we

can explore different ways of facilitating the integration of different systems with the blockchain

technology. In particular, there are lots of different information systems for lots of govern-

mental infrastructures that share no authentication, authorisation and accountability processes.

Managing to interoperate such systems, we can have a holistic and hermetic vision of what hap-

pens in social structures. In particular, data mining techniques might provide insight regarding

the accesses made on which structure, taking into account a broader context. This appealing

direction can contribute directly to the development of society.

5https://www.multichain.com/white-paper/
6https://cosmos. network/cosmos-whitepaper.pdf
7https://tendermint.com
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